Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4GaussHermiteQ class implementation 27 // 28 // Author: V.Grichine, 13.05.1997 V.Grichine 29 // -------------------------------------------------------------------- 30 31 #include "G4GaussHermiteQ.hh" 32 #include "G4PhysicalConstants.hh" 33 34 #include <limits> 35 36 // ---------------------------------------------------------- 37 // 38 // Constructor for Gauss-Hermite 39 40 G4GaussHermiteQ::G4GaussHermiteQ(function pFunction, G4int nHermite) 41 : G4VGaussianQuadrature(pFunction) 42 { 43 const G4double tolerance = 1.0e-12; 44 const G4int maxNumber = 12; 45 46 G4int i = 1, j = 1, k = 1; 47 G4double newton0 = 0.; 48 G4double newton1 = 0.0, temp1 = 0.0, temp2 = 0.0, temp3 = 0.0, temp = 0.0; 49 G4double piInMinusQ = std::pow(pi, -0.25); // 1.0/std::sqrt(std::sqrt(pi)) ?? 50 51 fNumber = (nHermite + 1) / 2; 52 fAbscissa = new G4double[fNumber]; 53 fWeight = new G4double[fNumber]; 54 55 for(i = 1; i <= fNumber; ++i) 56 { 57 if(i == 1) 58 { 59 newton0 = 60 std::sqrt((G4double)(2 * nHermite + 1)) - 61 1.85575001 * std::pow((G4double)(2 * nHermite + 1), -0.16666999); 62 } 63 else if(i == 2) 64 { 65 newton0 -= 1.14001 * std::pow((G4double) nHermite, 0.425999) / newton0; 66 } 67 else if(i == 3) 68 { 69 newton0 = 1.86002 * newton0 - 0.86002 * fAbscissa[0]; 70 } 71 else if(i == 4) 72 { 73 newton0 = 1.91001 * newton0 - 0.91001 * fAbscissa[1]; 74 } 75 else 76 { 77 newton0 = 2.0 * newton0 - fAbscissa[i - 3]; 78 } 79 for(k = 1; k <= maxNumber; ++k) 80 { 81 temp1 = piInMinusQ; 82 temp2 = 0.0; 83 for(j = 1; j <= nHermite; ++j) 84 { 85 temp3 = temp2; 86 temp2 = temp1; 87 temp1 = newton0 * std::sqrt(2.0 / j) * temp2 - 88 std::sqrt(((G4double)(j - 1)) / j) * temp3; 89 } 90 temp = std::sqrt((G4double) 2 * nHermite) * temp2; 91 newton1 = newton0; 92 G4double ratio = std::numeric_limits<G4double>::max(); 93 if(temp > 0.0) 94 { 95 ratio = temp1 / temp; 96 } 97 newton0 = newton1 - ratio; 98 if(std::fabs(newton0 - newton1) <= tolerance) 99 { 100 break; 101 } 102 } 103 if(k > maxNumber) 104 { 105 G4Exception("G4GaussHermiteQ::G4GaussHermiteQ()", "OutOfRange", 106 FatalException, 107 "Too many iterations in Gauss-Hermite constructor."); 108 } 109 fAbscissa[i - 1] = newton0; 110 fWeight[i - 1] = 2.0 / (temp * temp); 111 } 112 } 113 114 // ---------------------------------------------------------- 115 // 116 // Gauss-Hermite method for integration of std::exp(-x*x)*nFunction(x) 117 // from minus infinity to plus infinity . 118 119 G4double G4GaussHermiteQ::Integral() const 120 { 121 G4double integral = 0.0; 122 for(G4int i = 0; i < fNumber; ++i) 123 { 124 integral += 125 fWeight[i] * (fFunction(fAbscissa[i]) + fFunction(-fAbscissa[i])); 126 } 127 return integral; 128 } 129