Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/src/G4GaussHermiteQ.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // G4GaussHermiteQ class implementation
 27 //
 28 // Author: V.Grichine, 13.05.1997 V.Grichine
 29 // --------------------------------------------------------------------
 30 
 31 #include "G4GaussHermiteQ.hh"
 32 #include "G4PhysicalConstants.hh"
 33 
 34 #include <limits>
 35 
 36 // ----------------------------------------------------------
 37 //
 38 // Constructor for Gauss-Hermite
 39 
 40 G4GaussHermiteQ::G4GaussHermiteQ(function pFunction, G4int nHermite)
 41   : G4VGaussianQuadrature(pFunction)
 42 {
 43   const G4double tolerance = 1.0e-12;
 44   const G4int maxNumber    = 12;
 45 
 46   G4int i = 1, j = 1, k = 1;
 47   G4double newton0 = 0.;
 48   G4double newton1 = 0.0, temp1 = 0.0, temp2 = 0.0, temp3 = 0.0, temp = 0.0;
 49   G4double piInMinusQ = std::pow(pi, -0.25);  // 1.0/std::sqrt(std::sqrt(pi)) ??
 50 
 51   fNumber   = (nHermite + 1) / 2;
 52   fAbscissa = new G4double[fNumber];
 53   fWeight   = new G4double[fNumber];
 54 
 55   for(i = 1; i <= fNumber; ++i)
 56   {
 57     if(i == 1)
 58     {
 59       newton0 =
 60         std::sqrt((G4double)(2 * nHermite + 1)) -
 61         1.85575001 * std::pow((G4double)(2 * nHermite + 1), -0.16666999);
 62     }
 63     else if(i == 2)
 64     {
 65       newton0 -= 1.14001 * std::pow((G4double) nHermite, 0.425999) / newton0;
 66     }
 67     else if(i == 3)
 68     {
 69       newton0 = 1.86002 * newton0 - 0.86002 * fAbscissa[0];
 70     }
 71     else if(i == 4)
 72     {
 73       newton0 = 1.91001 * newton0 - 0.91001 * fAbscissa[1];
 74     }
 75     else
 76     {
 77       newton0 = 2.0 * newton0 - fAbscissa[i - 3];
 78     }
 79     for(k = 1; k <= maxNumber; ++k)
 80     {
 81       temp1 = piInMinusQ;
 82       temp2 = 0.0;
 83       for(j = 1; j <= nHermite; ++j)
 84       {
 85         temp3 = temp2;
 86         temp2 = temp1;
 87         temp1 = newton0 * std::sqrt(2.0 / j) * temp2 -
 88                 std::sqrt(((G4double)(j - 1)) / j) * temp3;
 89       }
 90       temp    = std::sqrt((G4double) 2 * nHermite) * temp2;
 91       newton1 = newton0;
 92       G4double ratio = std::numeric_limits<G4double>::max();
 93       if(temp > 0.0)
 94       {
 95         ratio = temp1 / temp;
 96       }
 97       newton0 = newton1 - ratio;
 98       if(std::fabs(newton0 - newton1) <= tolerance)
 99       {
100         break;
101       }
102     }
103     if(k > maxNumber)
104     {
105       G4Exception("G4GaussHermiteQ::G4GaussHermiteQ()", "OutOfRange",
106                   FatalException,
107                   "Too many iterations in Gauss-Hermite constructor.");
108     }
109     fAbscissa[i - 1] = newton0;
110     fWeight[i - 1]   = 2.0 / (temp * temp);
111   }
112 }
113 
114 // ----------------------------------------------------------
115 //
116 // Gauss-Hermite method for integration of std::exp(-x*x)*nFunction(x)
117 // from minus infinity to plus infinity .
118 
119 G4double G4GaussHermiteQ::Integral() const
120 {
121   G4double integral = 0.0;
122   for(G4int i = 0; i < fNumber; ++i)
123   {
124     integral +=
125       fWeight[i] * (fFunction(fAbscissa[i]) + fFunction(-fAbscissa[i]));
126   }
127   return integral;
128 }
129