Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/include/G4PolynomialSolver.icc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // G4PolynomialSolver inline methods implementation
 27 //
 28 // Author: E.Medernach, 19.12.2000 - First implementation
 29 // --------------------------------------------------------------------
 30 
 31 #define POLEPSILON 1e-12
 32 #define POLINFINITY 9.0E99
 33 #define ITERATION 12  // 20 But 8 is really enough for Newton with a good guess
 34 
 35 template <class T, class F>
 36 G4PolynomialSolver<T, F>::G4PolynomialSolver(T* typeF, F func, F deriv,
 37                                              G4double precision)
 38 {
 39   Precision     = precision;
 40   FunctionClass = typeF;
 41   Function      = func;
 42   Derivative    = deriv;
 43 }
 44 
 45 template <class T, class F>
 46 G4PolynomialSolver<T, F>::~G4PolynomialSolver()
 47 {}
 48 
 49 template <class T, class F>
 50 G4double G4PolynomialSolver<T, F>::solve(G4double IntervalMin,
 51                                          G4double IntervalMax)
 52 {
 53   return Newton(IntervalMin, IntervalMax);
 54 }
 55 
 56 /* If we want to be general this could work for any
 57    polynomial of order more that 4 if we find the (ORDER + 1)
 58    control points
 59 */
 60 #define NBBEZIER 5
 61 
 62 template <class T, class F>
 63 G4int G4PolynomialSolver<T, F>::BezierClipping(/*T* typeF,F func,F deriv,*/
 64                                                G4double* IntervalMin,
 65                                                G4double* IntervalMax)
 66 {
 67   /** BezierClipping is a clipping interval Newton method **/
 68   /** It works by clipping the area where the polynomial is **/
 69 
 70   G4double P[NBBEZIER][2], D[2];
 71   G4double NewMin, NewMax;
 72 
 73   G4int IntervalIsVoid = 1;
 74 
 75   /*** Calculating Control Points  ***/
 76   /* We see the polynomial as a Bezier curve for some control points to find */
 77 
 78   /*
 79     For 5 control points (polynomial of degree 4) this is:
 80 
 81     0     p0 = F((*IntervalMin))
 82     1/4   p1 = F((*IntervalMin)) + ((*IntervalMax) - (*IntervalMin))/4
 83                  * F'((*IntervalMin))
 84     2/4   p2 = 1/6 * (16*F(((*IntervalMax) + (*IntervalMin))/2)
 85                       - (p0 + 4*p1 + 4*p3 + p4))
 86     3/4   p3 = F((*IntervalMax)) - ((*IntervalMax) - (*IntervalMin))/4
 87                  * F'((*IntervalMax))
 88     1     p4 = F((*IntervalMax))
 89   */
 90 
 91   /* x,y,z,dx,dy,dz are constant during searching */
 92 
 93   D[0] = (FunctionClass->*Derivative)(*IntervalMin);
 94 
 95   P[0][0] = (*IntervalMin);
 96   P[0][1] = (FunctionClass->*Function)(*IntervalMin);
 97 
 98   if(std::fabs(P[0][1]) < Precision)
 99   {
100     return 1;
101   }
102 
103   if(((*IntervalMax) - (*IntervalMin)) < POLEPSILON)
104   {
105     return 1;
106   }
107 
108   P[1][0] = (*IntervalMin) + ((*IntervalMax) - (*IntervalMin)) / 4;
109   P[1][1] = P[0][1] + (((*IntervalMax) - (*IntervalMin)) / 4.0) * D[0];
110 
111   D[1] = (FunctionClass->*Derivative)(*IntervalMax);
112 
113   P[4][0] = (*IntervalMax);
114   P[4][1] = (FunctionClass->*Function)(*IntervalMax);
115 
116   P[3][0] = (*IntervalMax) - ((*IntervalMax) - (*IntervalMin)) / 4;
117   P[3][1] = P[4][1] - ((*IntervalMax) - (*IntervalMin)) / 4 * D[1];
118 
119   P[2][0] = ((*IntervalMax) + (*IntervalMin)) / 2;
120   P[2][1] =
121     (16 * (FunctionClass->*Function)(((*IntervalMax) + (*IntervalMin)) / 2) -
122      (P[0][1] + 4 * P[1][1] + 4 * P[3][1] + P[4][1])) /
123     6;
124 
125   {
126     G4double Intersection;
127     G4int i, j;
128 
129     NewMin = (*IntervalMax);
130     NewMax = (*IntervalMin);
131 
132     for(i = 0; i < 5; ++i)
133       for(j = i + 1; j < 5; ++j)
134       {
135         /* there is an intersection only if each have different signs */
136         if(((P[j][1] > -Precision) && (P[i][1] < Precision)) ||
137            ((P[j][1] < Precision) && (P[i][1] > -Precision)))
138         {
139           IntervalIsVoid = 0;
140           Intersection =
141             P[j][0] - P[j][1] * ((P[i][0] - P[j][0]) / (P[i][1] - P[j][1]));
142           if(Intersection < NewMin)
143           {
144             NewMin = Intersection;
145           }
146           if(Intersection > NewMax)
147           {
148             NewMax = Intersection;
149           }
150         }
151       }
152 
153     if(IntervalIsVoid != 1)
154     {
155       (*IntervalMax) = NewMax;
156       (*IntervalMin) = NewMin;
157     }
158   }
159 
160   if(IntervalIsVoid == 1)
161   {
162     return -1;
163   }
164 
165   return 0;
166 }
167 
168 template <class T, class F>
169 G4double G4PolynomialSolver<T, F>::Newton(G4double IntervalMin,
170                                           G4double IntervalMax)
171 {
172   /* So now we have a good guess and an interval where
173      if there are an intersection the root must be */
174 
175   G4double Value    = 0;
176   G4double Gradient = 0;
177   G4double Lambda;
178 
179   G4int i = 0;
180   G4int j = 0;
181 
182   /* Reduce interval before applying Newton Method */
183   {
184     G4int NewtonIsSafe;
185 
186     while((NewtonIsSafe = BezierClipping(&IntervalMin, &IntervalMax)) == 0)
187       ;
188 
189     if(NewtonIsSafe == -1)
190     {
191       return POLINFINITY;
192     }
193   }
194 
195   Lambda = IntervalMin;
196   Value  = (FunctionClass->*Function)(Lambda);
197 
198   //  while ((std::fabs(Value) > Precision)) {
199   while(j != -1)
200   {
201     Value = (FunctionClass->*Function)(Lambda);
202 
203     Gradient = (FunctionClass->*Derivative)(Lambda);
204 
205     Lambda = Lambda - Value / Gradient;
206 
207     if(std::fabs(Value) <= Precision)
208     {
209       ++j;
210       if(j == 2)
211       {
212         j = -1;
213       }
214     }
215     else
216     {
217       ++i;
218 
219       if(i > ITERATION)
220         return POLINFINITY;
221     }
222   }
223   return Lambda;
224 }
225