Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/include/G4PolynomialSolver.hh

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // G4PolynomialSolver
 27 //
 28 // Class description:
 29 //
 30 //   G4PolynomialSolver allows the user to solve a polynomial equation
 31 //   with a great precision. This is used by Implicit Equation solver.
 32 //
 33 //   The Bezier clipping method is used to solve the polynomial.
 34 //
 35 // How to use it:
 36 //   Create a class that is the function to be solved.
 37 //   This class could have internal parameters to allow to change
 38 //   the equation to be solved without recreating a new one.
 39 //
 40 //   Define a Polynomial solver, example:
 41 //   G4PolynomialSolver<MyFunctionClass,G4double(MyFunctionClass::*)(G4double)>
 42 //     PolySolver (&MyFunction,
 43 //                 &MyFunctionClass::Function,
 44 //                 &MyFunctionClass::Derivative,
 45 //                 precision);
 46 //
 47 //   The precision is relative to the function to solve.
 48 //
 49 //   In MyFunctionClass, provide the function to solve and its derivative:
 50 //   Example of function to provide :
 51 //
 52 //   x,y,z,dx,dy,dz,Rmin,Rmax are internal variables of MyFunctionClass
 53 //
 54 //   G4double MyFunctionClass::Function(G4double value)
 55 //   {
 56 //     G4double Lx,Ly,Lz;
 57 //     G4double result;
 58 //
 59 //     Lx = x + value*dx;
 60 //     Ly = y + value*dy;
 61 //     Lz = z + value*dz;
 62 //
 63 //     result = TorusEquation(Lx,Ly,Lz,Rmax,Rmin);
 64 //
 65 //     return result ;
 66 //   }
 67 //
 68 //   G4double MyFunctionClass::Derivative(G4double value)
 69 //   {
 70 //     G4double Lx,Ly,Lz;
 71 //     G4double result;
 72 //
 73 //     Lx = x + value*dx;
 74 //     Ly = y + value*dy;
 75 //     Lz = z + value*dz;
 76 //
 77 //     result = dx*TorusDerivativeX(Lx,Ly,Lz,Rmax,Rmin);
 78 //     result += dy*TorusDerivativeY(Lx,Ly,Lz,Rmax,Rmin);
 79 //     result += dz*TorusDerivativeZ(Lx,Ly,Lz,Rmax,Rmin);
 80 //
 81 //     return result;
 82 //   }
 83 //
 84 //   Then to have a root inside an interval [IntervalMin,IntervalMax] do the
 85 //   following:
 86 //
 87 //   MyRoot = PolySolver.solve(IntervalMin,IntervalMax);
 88 
 89 // Author: E.Medernach, 19.12.2000 - First implementation
 90 // --------------------------------------------------------------------
 91 #ifndef G4POL_SOLVER_HH
 92 #define G4POL_SOLVER_HH 1
 93 
 94 #include "globals.hh"
 95 
 96 template <class T, class F>
 97 class G4PolynomialSolver
 98 {
 99  public:
100   G4PolynomialSolver(T* typeF, F func, F deriv, G4double precision);
101   ~G4PolynomialSolver();
102 
103   G4double solve(G4double IntervalMin, G4double IntervalMax);
104 
105  private:
106   G4double Newton(G4double IntervalMin, G4double IntervalMax);
107   // General Newton method with Bezier Clipping
108 
109   // Works for polynomial of order less or equal than 4.
110   // But could be changed to work for polynomial of any order providing
111   // that we find the bezier control points.
112 
113   G4int BezierClipping(G4double* IntervalMin, G4double* IntervalMax);
114   // This is just one iteration of Bezier Clipping
115 
116   T* FunctionClass;
117   F Function;
118   F Derivative;
119 
120   G4double Precision;
121 };
122 
123 #include "G4PolynomialSolver.icc"
124 
125 #endif
126