Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4ClippablePolygon implementation 27 // 28 // Includes code from G4VSolid (P.Kent, V.Grichine, J.Allison) 29 // -------------------------------------------------------------------- 30 31 #include "G4ClippablePolygon.hh" 32 33 #include "G4VoxelLimits.hh" 34 #include "G4GeometryTolerance.hh" 35 36 // Constructor 37 // 38 G4ClippablePolygon::G4ClippablePolygon() 39 : normal(0.,0.,0.) 40 { 41 kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); 42 } 43 44 // Destructor 45 // 46 G4ClippablePolygon::~G4ClippablePolygon() = default; 47 48 // AddVertexInOrder 49 // 50 void G4ClippablePolygon::AddVertexInOrder( const G4ThreeVector vertex ) 51 { 52 vertices.push_back( vertex ); 53 } 54 55 // ClearAllVertices 56 // 57 void G4ClippablePolygon::ClearAllVertices() 58 { 59 vertices.clear(); 60 } 61 62 // Clip 63 // 64 G4bool G4ClippablePolygon::Clip( const G4VoxelLimits& voxelLimit ) 65 { 66 if (voxelLimit.IsLimited()) 67 { 68 ClipAlongOneAxis( voxelLimit, kXAxis ); 69 ClipAlongOneAxis( voxelLimit, kYAxis ); 70 ClipAlongOneAxis( voxelLimit, kZAxis ); 71 } 72 73 return (!vertices.empty()); 74 } 75 76 // PartialClip 77 // 78 // Clip, while ignoring the indicated axis 79 // 80 G4bool G4ClippablePolygon::PartialClip( const G4VoxelLimits& voxelLimit, 81 const EAxis IgnoreMe ) 82 { 83 if (voxelLimit.IsLimited()) 84 { 85 if (IgnoreMe != kXAxis) ClipAlongOneAxis( voxelLimit, kXAxis ); 86 if (IgnoreMe != kYAxis) ClipAlongOneAxis( voxelLimit, kYAxis ); 87 if (IgnoreMe != kZAxis) ClipAlongOneAxis( voxelLimit, kZAxis ); 88 } 89 90 return (!vertices.empty()); 91 } 92 93 // GetExtent 94 // 95 G4bool G4ClippablePolygon::GetExtent( const EAxis axis, 96 G4double& min, 97 G4double& max ) const 98 { 99 // 100 // Okay, how many entries do we have? 101 // 102 std::size_t noLeft = vertices.size(); 103 104 // 105 // Return false if nothing is left 106 // 107 if (noLeft == 0) return false; 108 109 // 110 // Initialize min and max to our first vertex 111 // 112 min = max = vertices[0].operator()( axis ); 113 114 // 115 // Compare to the rest 116 // 117 for( std::size_t i=1; i<noLeft; ++i ) 118 { 119 G4double component = vertices[i].operator()( axis ); 120 if (component < min ) 121 min = component; 122 else if (component > max ) 123 max = component; 124 } 125 126 return true; 127 } 128 129 // GetMinPoint 130 // 131 // Returns pointer to minimum point along the specified axis. 132 // Take care! Do not use pointer after destroying parent polygon. 133 // 134 const G4ThreeVector* G4ClippablePolygon::GetMinPoint( const EAxis axis ) const 135 { 136 std::size_t noLeft = vertices.size(); 137 if (noLeft==0) 138 { 139 G4Exception("G4ClippablePolygon::GetMinPoint()", 140 "GeomSolids0002", FatalException, "Empty polygon."); 141 } 142 143 const G4ThreeVector *answer = &(vertices[0]); 144 G4double min = answer->operator()(axis); 145 146 for( std::size_t i=1; i<noLeft; ++i ) 147 { 148 G4double component = vertices[i].operator()( axis ); 149 if (component < min) 150 { 151 answer = &(vertices[i]); 152 min = component; 153 } 154 } 155 156 return answer; 157 } 158 159 // GetMaxPoint 160 // 161 // Returns pointer to maximum point along the specified axis. 162 // Take care! Do not use pointer after destroying parent polygon. 163 // 164 const G4ThreeVector* G4ClippablePolygon::GetMaxPoint( const EAxis axis ) const 165 { 166 std::size_t noLeft = vertices.size(); 167 if (noLeft==0) 168 { 169 G4Exception("G4ClippablePolygon::GetMaxPoint()", 170 "GeomSolids0002", FatalException, "Empty polygon."); 171 } 172 173 const G4ThreeVector *answer = &(vertices[0]); 174 G4double max = answer->operator()(axis); 175 176 for( std::size_t i=1; i<noLeft; ++i ) 177 { 178 G4double component = vertices[i].operator()( axis ); 179 if (component > max) 180 { 181 answer = &(vertices[i]); 182 max = component; 183 } 184 } 185 186 return answer; 187 } 188 189 // InFrontOf 190 // 191 // Decide if this polygon is in "front" of another when 192 // viewed along the specified axis. For our purposes here, 193 // it is sufficient to use the minimum extent of the 194 // polygon along the axis to determine this. 195 // 196 // In case the minima of the two polygons are equal, 197 // we use a more sophisticated test. 198 // 199 // Note that it is possible for the two following 200 // statements to both return true or both return false: 201 // polygon1.InFrontOf(polygon2) 202 // polygon2.BehindOf(polygon1) 203 // 204 G4bool G4ClippablePolygon::InFrontOf( const G4ClippablePolygon& other, 205 EAxis axis ) const 206 { 207 // 208 // If things are empty, do something semi-sensible 209 // 210 std::size_t noLeft = vertices.size(); 211 if (noLeft==0) return false; 212 213 if (other.Empty()) return true; 214 215 // 216 // Get minimum of other polygon 217 // 218 const G4ThreeVector *minPointOther = other.GetMinPoint( axis ); 219 const G4double minOther = minPointOther->operator()(axis); 220 221 // 222 // Get minimum of this polygon 223 // 224 const G4ThreeVector *minPoint = GetMinPoint( axis ); 225 const G4double min = minPoint->operator()(axis); 226 227 // 228 // Easy decision 229 // 230 if (min < minOther-kCarTolerance) return true; // Clear winner 231 232 if (minOther < min-kCarTolerance) return false; // Clear loser 233 234 // 235 // We have a tie (this will not be all that rare since our 236 // polygons are connected) 237 // 238 // Check to see if there is a vertex in the other polygon 239 // that is behind this one (or vice versa) 240 // 241 G4bool answer; 242 G4ThreeVector normalOther = other.GetNormal(); 243 244 if (std::fabs(normalOther(axis)) > std::fabs(normal(axis))) 245 { 246 G4double minP, maxP; 247 GetPlanerExtent( *minPointOther, normalOther, minP, maxP ); 248 249 answer = (normalOther(axis) > 0) ? (minP < -kCarTolerance) 250 : (maxP > +kCarTolerance); 251 } 252 else 253 { 254 G4double minP, maxP; 255 other.GetPlanerExtent( *minPoint, normal, minP, maxP ); 256 257 answer = (normal(axis) > 0) ? (maxP > +kCarTolerance) 258 : (minP < -kCarTolerance); 259 } 260 return answer; 261 } 262 263 // BehindOf 264 // 265 // Decide if this polygon is behind another. 266 // See notes in method "InFrontOf" 267 // 268 G4bool G4ClippablePolygon::BehindOf( const G4ClippablePolygon& other, 269 EAxis axis ) const 270 { 271 // 272 // If things are empty, do something semi-sensible 273 // 274 std::size_t noLeft = vertices.size(); 275 if (noLeft==0) return false; 276 277 if (other.Empty()) return true; 278 279 // 280 // Get minimum of other polygon 281 // 282 const G4ThreeVector *maxPointOther = other.GetMaxPoint( axis ); 283 const G4double maxOther = maxPointOther->operator()(axis); 284 285 // 286 // Get minimum of this polygon 287 // 288 const G4ThreeVector *maxPoint = GetMaxPoint( axis ); 289 const G4double max = maxPoint->operator()(axis); 290 291 // 292 // Easy decision 293 // 294 if (max > maxOther+kCarTolerance) return true; // Clear winner 295 296 if (maxOther > max+kCarTolerance) return false; // Clear loser 297 298 // 299 // We have a tie (this will not be all that rare since our 300 // polygons are connected) 301 // 302 // Check to see if there is a vertex in the other polygon 303 // that is in front of this one (or vice versa) 304 // 305 G4bool answer; 306 G4ThreeVector normalOther = other.GetNormal(); 307 308 if (std::fabs(normalOther(axis)) > std::fabs(normal(axis))) 309 { 310 G4double minP, maxP; 311 GetPlanerExtent( *maxPointOther, normalOther, minP, maxP ); 312 313 answer = (normalOther(axis) > 0) ? (maxP > +kCarTolerance) 314 : (minP < -kCarTolerance); 315 } 316 else 317 { 318 G4double minP, maxP; 319 other.GetPlanerExtent( *maxPoint, normal, minP, maxP ); 320 321 answer = (normal(axis) > 0) ? (minP < -kCarTolerance) 322 : (maxP > +kCarTolerance); 323 } 324 return answer; 325 } 326 327 // GetPlanerExtent 328 // 329 // Get min/max distance in or out of a plane 330 // 331 G4bool G4ClippablePolygon::GetPlanerExtent( const G4ThreeVector& pointOnPlane, 332 const G4ThreeVector& planeNormal, 333 G4double& min, 334 G4double& max ) const 335 { 336 // 337 // Okay, how many entries do we have? 338 // 339 std::size_t noLeft = vertices.size(); 340 341 // 342 // Return false if nothing is left 343 // 344 if (noLeft == 0) return false; 345 346 // 347 // Initialize min and max to our first vertex 348 // 349 min = max = planeNormal.dot(vertices[0]-pointOnPlane); 350 351 // 352 // Compare to the rest 353 // 354 for( std::size_t i=1; i<noLeft; ++i ) 355 { 356 G4double component = planeNormal.dot(vertices[i] - pointOnPlane); 357 if (component < min ) 358 min = component; 359 else if (component > max ) 360 max = component; 361 } 362 363 return true; 364 } 365 366 // ClipAlongOneAxis 367 // 368 // Clip along just one axis, as specified in voxelLimit 369 // 370 void G4ClippablePolygon::ClipAlongOneAxis( const G4VoxelLimits& voxelLimit, 371 const EAxis axis ) 372 { 373 if (!voxelLimit.IsLimited(axis)) return; 374 375 G4ThreeVectorList tempPolygon; 376 377 // 378 // Build a "simple" voxelLimit that includes only the min extent 379 // and apply this to our vertices, producing result in tempPolygon 380 // 381 G4VoxelLimits simpleLimit1; 382 simpleLimit1.AddLimit( axis, voxelLimit.GetMinExtent(axis), kInfinity ); 383 ClipToSimpleLimits( vertices, tempPolygon, simpleLimit1 ); 384 385 // 386 // If nothing is left from the above clip, we might as well return now 387 // (but with an empty vertices) 388 // 389 if (tempPolygon.empty()) 390 { 391 vertices.clear(); 392 return; 393 } 394 395 // 396 // Now do the same, but using a "simple" limit that includes only the max 397 // extent. Apply this to out tempPolygon, producing result in vertices. 398 // 399 G4VoxelLimits simpleLimit2; 400 simpleLimit2.AddLimit( axis, -kInfinity, voxelLimit.GetMaxExtent(axis) ); 401 ClipToSimpleLimits( tempPolygon, vertices, simpleLimit2 ); 402 403 // 404 // If nothing is left, return now 405 // 406 if (vertices.empty()) return; 407 } 408 409 // ClipToSimpleLimits 410 // 411 // pVoxelLimits must be only limited along one axis, and either the maximum 412 // along the axis must be +kInfinity, or the minimum -kInfinity 413 // 414 void G4ClippablePolygon::ClipToSimpleLimits( G4ThreeVectorList& pPolygon, 415 G4ThreeVectorList& outputPolygon, 416 const G4VoxelLimits& pVoxelLimit ) 417 { 418 std::size_t noVertices = pPolygon.size(); 419 G4ThreeVector vEnd,vStart; 420 421 outputPolygon.clear(); 422 423 for (std::size_t i=0; i<noVertices; ++i) 424 { 425 vStart=pPolygon[i]; 426 if (i==noVertices-1) 427 { 428 vEnd=pPolygon[0]; 429 } 430 else 431 { 432 vEnd=pPolygon[i+1]; 433 } 434 435 if (pVoxelLimit.Inside(vStart)) 436 { 437 if (pVoxelLimit.Inside(vEnd)) 438 { 439 // vStart and vEnd inside -> output end point 440 // 441 outputPolygon.push_back(vEnd); 442 } 443 else 444 { 445 // vStart inside, vEnd outside -> output crossing point 446 // 447 pVoxelLimit.ClipToLimits(vStart,vEnd); 448 outputPolygon.push_back(vEnd); 449 } 450 } 451 else 452 { 453 if (pVoxelLimit.Inside(vEnd)) 454 { 455 // vStart outside, vEnd inside -> output inside section 456 // 457 pVoxelLimit.ClipToLimits(vStart,vEnd); 458 outputPolygon.push_back(vStart); 459 outputPolygon.push_back(vEnd); 460 } 461 else // Both point outside -> no output 462 { 463 } 464 } 465 } 466 } 467