Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4TwistTrapAlphaSide 27 // 28 // Class description: 29 // 30 // Class describing a twisted boundary surface for a trapezoid. 31 32 // Author: 27-Oct-2004 - O.Link (Oliver.Link@cern.ch) 33 // -------------------------------------------------------------------- 34 #ifndef G4TWISTTRAPALPHASIDE_HH 35 #define G4TWISTTRAPALPHASIDE_HH 36 37 #include "G4VTwistSurface.hh" 38 39 #include <vector> 40 41 class G4TwistTrapAlphaSide : public G4VTwistSurface 42 { 43 public: 44 45 G4TwistTrapAlphaSide(const G4String& name, 46 G4double PhiTwist, // twist angle 47 G4double pDz, // half z lenght 48 G4double pTheta, // direction between end planes 49 G4double pPhi, // by polar and azimutal angles 50 G4double pDy1, // half y length at -pDz 51 G4double pDx1, // half x length at -pDz,-pDy 52 G4double pDx2, // half x length at -pDz,+pDy 53 G4double pDy2, // half y length at +pDz 54 G4double pDx3, // half x length at +pDz,-pDy 55 G4double pDx4, // half x length at +pDz,+pDy 56 G4double pAlph, // tilt angle at +pDz 57 G4double AngleSide // parity 58 ); 59 60 ~G4TwistTrapAlphaSide() override; 61 62 G4ThreeVector GetNormal(const G4ThreeVector& xx, 63 G4bool isGlobal = false) override ; 64 65 G4int DistanceToSurface(const G4ThreeVector& gp, 66 const G4ThreeVector& gv, 67 G4ThreeVector gxx[], 68 G4double distance[], 69 G4int areacode[], 70 G4bool isvalid[], 71 EValidate validate = kValidateWithTol) override; 72 73 G4int DistanceToSurface(const G4ThreeVector& gp, 74 G4ThreeVector gxx[], 75 G4double distance[], 76 G4int areacode[]) override; 77 78 G4TwistTrapAlphaSide(__void__&); 79 // Fake default constructor for usage restricted to direct object 80 // persistency for clients requiring preallocation of memory for 81 // persistifiable objects. 82 83 private: 84 85 G4int GetAreaCode(const G4ThreeVector& xx, 86 G4bool withTol = true) override; 87 void SetCorners() override; 88 void SetBoundaries() override; 89 90 void GetPhiUAtX(const G4ThreeVector& p, G4double& phi, G4double& u); 91 G4ThreeVector ProjectPoint(const G4ThreeVector& p, 92 G4bool isglobal = false); 93 94 inline G4ThreeVector SurfacePoint(G4double phi, G4double u, 95 G4bool isGlobal = false ) override; 96 inline G4double GetBoundaryMin(G4double phi) override; 97 inline G4double GetBoundaryMax(G4double phi) override; 98 inline G4double GetSurfaceArea() override; 99 void GetFacets( G4int m, G4int n, G4double xyz[][3], 100 G4int faces[][4], G4int iside ) override; 101 102 inline G4ThreeVector NormAng(G4double phi, G4double u); 103 inline G4double GetValueA(G4double phi); 104 inline G4double GetValueB(G4double phi); 105 inline G4double GetValueD(G4double phi); 106 inline G4double Xcoef(G4double u,G4double phi); 107 // To calculate the w(u) function 108 109 private: 110 111 G4double fTheta; 112 G4double fPhi ; 113 114 G4double fDy1; 115 G4double fDx1; 116 G4double fDx2; 117 118 G4double fDy2; 119 G4double fDx3; 120 G4double fDx4; 121 122 G4double fDz; // Half-length along the z axis 123 124 G4double fAlph; 125 G4double fTAlph; // std::tan(fAlph) 126 127 G4double fPhiTwist; // twist angle (dphi in surface equation) 128 129 G4double fAngleSide; 130 131 G4double fDx4plus2; // fDx4 + fDx2 == a2/2 + a1/2 132 G4double fDx4minus2; // fDx4 - fDx2 - 133 G4double fDx3plus1; // fDx3 + fDx1 == d2/2 + d1/2 134 G4double fDx3minus1; // fDx3 - fDx1 - 135 G4double fDy2plus1; // fDy2 + fDy1 == b2/2 + b1/2 136 G4double fDy2minus1; // fDy2 - fDy1 - 137 G4double fa1md1; // 2 fDx2 - 2 fDx1 == a1 - d1 138 G4double fa2md2; // 2 fDx4 - 2 fDx3 139 140 G4double fdeltaX; 141 G4double fdeltaY; 142 }; 143 144 //======================================================== 145 // inline functions 146 //======================================================== 147 148 inline 149 G4double G4TwistTrapAlphaSide::GetValueA(G4double phi) 150 { 151 return ( fDx4plus2 + fDx4minus2 * ( 2 * phi ) / fPhiTwist ) ; 152 } 153 154 inline 155 G4double G4TwistTrapAlphaSide::GetValueD(G4double phi) 156 { 157 return ( fDx3plus1 + fDx3minus1 * ( 2 * phi) / fPhiTwist ) ; 158 } 159 160 inline 161 G4double G4TwistTrapAlphaSide::GetValueB(G4double phi) 162 { 163 return ( fDy2plus1 + fDy2minus1 * ( 2 * phi ) / fPhiTwist ) ; 164 } 165 166 167 inline 168 G4double G4TwistTrapAlphaSide::Xcoef(G4double u, G4double phi) 169 { 170 171 return GetValueA(phi)/2. + (GetValueD(phi)-GetValueA(phi))/4. 172 - u*( ( GetValueD(phi)-GetValueA(phi) )/( 2 * GetValueB(phi) ) - fTAlph ); 173 174 } 175 176 inline G4ThreeVector 177 G4TwistTrapAlphaSide::SurfacePoint(G4double phi, G4double u , G4bool isGlobal) 178 { 179 // function to calculate a point on the surface, given by parameters phi,u 180 181 G4ThreeVector SurfPoint ( Xcoef(u,phi) * std::cos(phi) 182 - u * std::sin(phi) + fdeltaX*phi/fPhiTwist, 183 Xcoef(u,phi) * std::sin(phi) 184 + u * std::cos(phi) + fdeltaY*phi/fPhiTwist, 185 2*fDz*phi/fPhiTwist ); 186 if (isGlobal) { return (fRot * SurfPoint + fTrans); } 187 return SurfPoint; 188 } 189 190 inline 191 G4double G4TwistTrapAlphaSide::GetBoundaryMin(G4double phi) 192 { 193 return -0.5*GetValueB(phi) ; 194 } 195 196 inline 197 G4double G4TwistTrapAlphaSide::GetBoundaryMax(G4double phi) 198 { 199 return 0.5*GetValueB(phi) ; 200 } 201 202 inline 203 G4double G4TwistTrapAlphaSide::GetSurfaceArea() 204 { 205 return (fDz*(std::sqrt(16*fDy1*fDy1 206 + (fa1md1 + 4*fDy1*fTAlph)*(fa1md1 + 4*fDy1*fTAlph)) 207 + std::sqrt(16*fDy2*fDy2 + (fa2md2 + 4*fDy2*fTAlph) 208 * (fa2md2 + 4*fDy2*fTAlph))))/2. ; 209 } 210 211 inline 212 G4ThreeVector G4TwistTrapAlphaSide::NormAng( G4double phi, G4double u ) 213 { 214 // function to calculate the norm at a given point on the surface 215 // replace a1-d1 216 217 G4ThreeVector nvec ( fDy1* fDz*(4*fDy1*std::cos(phi) 218 + (fa1md1 + 4*fDy1*fTAlph)*std::sin(phi)), 219 -(fDy1* fDz*((fa1md1 + 4*fDy1*fTAlph)*std::cos(phi) 220 - 4*fDy1*std::sin(phi))), 221 (fDy1*(-8*(fDx3minus1 + fDx4minus2)*fDy1 222 + fa1md1*(fDx2 + fDx3plus1 + fDx4)*fPhiTwist 223 + 4*(fDx2 + fDx3plus1 + fDx4)*fDy1*fPhiTwist 224 *fTAlph + 2*(fDx3minus1 + fDx4minus2) 225 *(fa1md1 + 4*fDy1*fTAlph)*phi) 226 + fPhiTwist*(16*fDy1*fDy1 227 + (fa1md1 + 4*fDy1*fTAlph) 228 *(fa1md1 + 4*fDy1*fTAlph))*u 229 + 4*fDy1*(fa1md1*fdeltaY - 4*fdeltaX*fDy1 230 + 4*fdeltaY*fDy1*fTAlph)* std::cos(phi) 231 - 4*fDy1*(fa1md1*fdeltaX + 4*fDy1*(fdeltaY 232 + fdeltaX*fTAlph))*std::sin(phi))/ 8. ) ; 233 return nvec.unit(); 234 } 235 236 #endif 237