Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4TwistBoxSide 27 // 28 // Class description: 29 // 30 // G4TwistBoxSide describes a twisted boundary surface for a trapezoid. 31 32 // Author: 27-Oct-2004 - O.Link (Oliver.Link@cern.ch) 33 // -------------------------------------------------------------------- 34 #ifndef G4TWISTBOXSIDE_HH 35 #define G4TWISTBOXSIDE_HH 36 37 #include "G4VTwistSurface.hh" 38 39 #include <vector> 40 41 class G4TwistBoxSide : public G4VTwistSurface 42 { 43 public: 44 45 G4TwistBoxSide(const G4String& name, 46 G4double PhiTwist, // twist angle 47 G4double pDz, // half z lenght 48 G4double pTheta, // direction between end planes 49 G4double pPhi, // by polar and azimutal angles 50 G4double pDy1, // half y length at -pDz 51 G4double pDx1, // half x length at -pDz,-pDy 52 G4double pDx2, // half x length at -pDz,+pDy 53 G4double pDy2, // half y length at +pDz 54 G4double pDx3, // half x length at +pDz,-pDy 55 G4double pDx4, // half x length at +pDz,+pDy 56 G4double pAlph, // tilt angle at +pDz 57 G4double AngleSide // parity 58 ); 59 60 ~G4TwistBoxSide() override; 61 62 G4ThreeVector GetNormal(const G4ThreeVector& xx, 63 G4bool isGlobal = false) override ; 64 65 G4int DistanceToSurface(const G4ThreeVector& gp, 66 const G4ThreeVector& gv, 67 G4ThreeVector gxx[], 68 G4double distance[], 69 G4int areacode[], 70 G4bool isvalid[], 71 EValidate validate = kValidateWithTol) override; 72 73 G4int DistanceToSurface(const G4ThreeVector& gp, 74 G4ThreeVector gxx[], 75 G4double distance[], 76 G4int areacode[]) override; 77 78 G4TwistBoxSide(__void__&); 79 // Fake default constructor for usage restricted to direct object 80 // persistency for clients requiring preallocation of memory for 81 // persistifiable objects. 82 83 private: 84 85 G4int GetAreaCode(const G4ThreeVector& xx, 86 G4bool withTol = true) override; 87 void SetCorners() override; 88 void SetBoundaries() override; 89 90 void GetPhiUAtX(const G4ThreeVector& p, G4double& phi, G4double& u); 91 G4ThreeVector ProjectPoint(const G4ThreeVector& p, 92 G4bool isglobal = false); 93 94 inline G4ThreeVector SurfacePoint(G4double phi, G4double u, 95 G4bool isGlobal = false) override; 96 inline G4double GetBoundaryMin(G4double phi) override; 97 inline G4double GetBoundaryMax(G4double phi) override; 98 inline G4double GetSurfaceArea() override; 99 void GetFacets( G4int m, G4int n, G4double xyz[][3], 100 G4int faces[][4], G4int iside ) override; 101 102 inline G4double GetValueA(G4double phi); 103 inline G4double GetValueB(G4double phi); 104 inline G4ThreeVector NormAng(G4double phi, G4double u); 105 inline G4double Xcoef(G4double u, G4double phi); 106 // To calculate the w(u) function 107 108 private: 109 110 G4double fTheta; 111 G4double fPhi ; 112 113 G4double fDy1; 114 G4double fDx1; 115 G4double fDx2; 116 117 G4double fDy2; 118 G4double fDx3; 119 G4double fDx4; 120 121 G4double fDz; // Half-length along the z axis 122 123 G4double fAlph; 124 G4double fTAlph; // std::tan(fAlph) 125 126 G4double fPhiTwist; // twist angle ( dphi in surface equation) 127 128 G4double fAngleSide; 129 130 G4double fdeltaX; 131 G4double fdeltaY; 132 133 G4double fDx4plus2; // fDx4 + fDx2 == a2/2 + a1/2 134 G4double fDx4minus2; // fDx4 - fDx2 - 135 G4double fDx3plus1; // fDx3 + fDx1 == d2/2 + d1/2 136 G4double fDx3minus1; // fDx3 - fDx1 - 137 G4double fDy2plus1; // fDy2 + fDy1 == b2/2 + b1/2 138 G4double fDy2minus1; // fDy2 - fDy1 - 139 G4double fa1md1; // 2 fDx2 - 2 fDx1 == a1 - d1 140 G4double fa2md2; // 2 fDx4 - 2 fDx3 141 }; 142 143 //======================================================== 144 // inline functions 145 //======================================================== 146 147 inline 148 G4double G4TwistBoxSide::GetValueA(G4double phi) 149 { 150 return ( fDx4plus2 + fDx4minus2 * ( 2 * phi ) / fPhiTwist ) ; 151 } 152 153 154 inline 155 G4double G4TwistBoxSide::GetValueB(G4double phi) 156 { 157 return ( fDy2plus1 + fDy2minus1 * ( 2 * phi ) / fPhiTwist ) ; 158 } 159 160 inline 161 G4double G4TwistBoxSide::Xcoef(G4double u, G4double phi) 162 { 163 164 return GetValueA(phi)/2. + u*fTAlph ; 165 166 } 167 168 inline G4ThreeVector 169 G4TwistBoxSide::SurfacePoint( G4double phi, G4double u, G4bool isGlobal ) 170 { 171 // function to calculate a point on the surface, given by parameters phi,u 172 173 G4ThreeVector SurfPoint ( Xcoef(u,phi) * std::cos(phi) 174 - u * std::sin(phi) + fdeltaX*phi/fPhiTwist, 175 Xcoef(u,phi) * std::sin(phi) 176 + u * std::cos(phi) + fdeltaY*phi/fPhiTwist, 177 2*fDz*phi/fPhiTwist ); 178 179 if (isGlobal) { return (fRot * SurfPoint + fTrans); } 180 return SurfPoint; 181 } 182 183 inline 184 G4double G4TwistBoxSide::GetBoundaryMin(G4double phi) 185 { 186 return -0.5*GetValueB(phi) ; 187 } 188 189 inline 190 G4double G4TwistBoxSide::GetBoundaryMax(G4double phi) 191 { 192 return 0.5*GetValueB(phi) ; 193 } 194 195 inline 196 G4double G4TwistBoxSide::GetSurfaceArea() 197 { 198 return (fDz*(std::sqrt(16*fDy1*fDy1 199 + (fa1md1 + 4*fDy1*fTAlph)*(fa1md1 + 4*fDy1*fTAlph)) 200 + std::sqrt(16*fDy1*fDy1 + (fa2md2 + 4*fDy1*fTAlph) 201 * (fa2md2 + 4*fDy1*fTAlph))))/2. ; 202 } 203 204 inline 205 G4ThreeVector G4TwistBoxSide::NormAng( G4double phi, G4double u ) 206 { 207 // function to calculate the norm at a given point on the surface 208 // replace a1-d1 209 210 G4ThreeVector nvec( 4*fDz*(std::cos(phi) + fTAlph*std::sin(phi)) , 211 4*fDz*(-(fTAlph*std::cos(phi)) + std::sin(phi)), 212 (fDx2 + fDx4)*fPhiTwist*fTAlph 213 + 2*fDx4minus2*(-1 + fTAlph*phi) 214 + 2*fPhiTwist*(1 + fTAlph*fTAlph)*u 215 - 2*(fdeltaX - fdeltaY*fTAlph)*std::cos(phi) 216 - 2*(fdeltaY + fdeltaX*fTAlph)*std::sin(phi) ); 217 return nvec.unit(); 218 } 219 220 #endif 221