Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // class G4ErrorPropagationNavigator implementation 27 // 28 // Author: Pedro Arce, CIEMAT 29 // -------------------------------------------------------------------- 30 31 #include "G4ErrorPropagationNavigator.hh" 32 33 #include "globals.hh" 34 #include "G4ThreeVector.hh" 35 #include "G4ErrorPropagatorData.hh" 36 #include "G4ErrorSurfaceTarget.hh" 37 38 #include "G4ErrorPlaneSurfaceTarget.hh" 39 #include "G4ErrorCylSurfaceTarget.hh" 40 41 G4double G4ErrorPropagationNavigator:: 42 ComputeStep ( const G4ThreeVector &pGlobalPoint, 43 const G4ThreeVector &pDirection, 44 const G4double pCurrentProposedStepLength, 45 G4double &pNewSafety ) 46 { 47 G4double safetyGeom = DBL_MAX; 48 49 G4double Step = G4Navigator::ComputeStep(pGlobalPoint, pDirection, 50 pCurrentProposedStepLength, 51 safetyGeom); 52 53 G4ErrorPropagatorData* g4edata 54 = G4ErrorPropagatorData::GetErrorPropagatorData(); 55 56 if ( g4edata != nullptr ) 57 { 58 const G4ErrorTarget* target = g4edata->GetTarget(); 59 if( target != nullptr ) 60 { 61 G4double StepPlane=target->GetDistanceFromPoint(pGlobalPoint,pDirection); 62 63 if( StepPlane < 0. ) // Negative means target is crossed, 64 { // will not be found 65 StepPlane = DBL_MAX; 66 } 67 #ifdef G4VERBOSE 68 if( G4ErrorPropagatorData::verbose() >= 4 ) 69 { 70 G4cout << "G4ErrorPropagationNavigator::ComputeStep()" << G4endl 71 << " Target step: " << StepPlane 72 << ", Transportation step: " << Step << G4endl; 73 target->Dump( "G4ErrorPropagationNavigator::ComputeStep Target " ); 74 } 75 #endif 76 77 if( StepPlane < Step ) 78 { 79 #ifdef G4VERBOSE 80 if( G4ErrorPropagatorData::verbose() >= 2 ) 81 { 82 G4cout << "G4ErrorPropagationNavigator::ComputeStep()" << G4endl 83 << " TargetCloserThanBoundary: " << StepPlane << " < " 84 << Step << G4endl; 85 } 86 #endif 87 Step = StepPlane; 88 g4edata->SetState(G4ErrorState_TargetCloserThanBoundary); 89 } 90 else 91 { 92 g4edata->SetState(G4ErrorState_Propagating); 93 } 94 } 95 } 96 G4double safetyTarget = TargetSafetyFromPoint(pGlobalPoint); 97 98 // Avoid call to G4Navigator::ComputeSafety - which could have side effects 99 // 100 pNewSafety = std::min(safetyGeom, safetyTarget); 101 102 #ifdef G4VERBOSE 103 if( G4ErrorPropagatorData::verbose() >= 3 ) 104 { 105 G4cout << "G4ErrorPropagationNavigator::ComputeStep()" << G4endl 106 << " Step: " << Step << ", ComputeSafety: " << pNewSafety 107 << G4endl; 108 } 109 #endif 110 111 return Step; 112 } 113 114 //------------------------------------------------------------------- 115 116 G4double G4ErrorPropagationNavigator:: 117 TargetSafetyFromPoint( const G4ThreeVector& pGlobalpoint ) 118 { 119 G4double safety = DBL_MAX; 120 121 G4ErrorPropagatorData* g4edata 122 = G4ErrorPropagatorData::GetErrorPropagatorData(); 123 124 if ( g4edata != nullptr ) 125 { 126 const G4ErrorTarget* target = g4edata->GetTarget(); 127 if( target != nullptr ) 128 { 129 safety = target->GetDistanceFromPoint(pGlobalpoint); 130 } 131 } 132 return safety; 133 } 134 135 //------------------------------------------------------------------- 136 137 G4double G4ErrorPropagationNavigator:: 138 ComputeSafety( const G4ThreeVector &pGlobalPoint, 139 const G4double pMaxLength, 140 const G4bool keepState ) 141 { 142 G4double safetyGeom = G4Navigator::ComputeSafety(pGlobalPoint, 143 pMaxLength, keepState); 144 145 G4double safetyTarget = TargetSafetyFromPoint( pGlobalPoint ); 146 147 return std::min(safetyGeom, safetyTarget); 148 } 149 150 //------------------------------------------------------------------- 151 152 G4ThreeVector G4ErrorPropagationNavigator:: 153 GetGlobalExitNormal( const G4ThreeVector& point, G4bool* valid ) 154 { 155 G4ErrorPropagatorData* g4edata 156 = G4ErrorPropagatorData::GetErrorPropagatorData(); 157 const G4ErrorTarget* target = nullptr; 158 159 G4ThreeVector normal(0.0, 0.0, 0.0); 160 G4double distance= 0; 161 162 // Determine which 'geometry' limited the step 163 if ( g4edata != nullptr ) 164 { 165 target = g4edata->GetTarget(); 166 if( target != nullptr ) 167 { 168 distance = target->GetDistanceFromPoint(point); 169 } 170 } 171 172 if( distance > kCarTolerance || (target == nullptr) ) 173 // Not reached the target or if a target does not exist, 174 // this seems the best we can do 175 { 176 normal = G4Navigator::GetGlobalExitNormal(point, valid); 177 } 178 else 179 { 180 switch( target->GetType() ) 181 { 182 case G4ErrorTarget_GeomVolume: 183 // The volume is in the 'real' mass geometry 184 normal = G4Navigator::GetGlobalExitNormal(point, valid); 185 break; 186 case G4ErrorTarget_TrkL: 187 normal = G4ThreeVector( 0.0, 0.0, 0.0); 188 *valid = false; 189 G4Exception("G4ErrorPropagationNavigator::GetGlobalExitNormal", 190 "Geometry1003", 191 JustWarning, "Unexpected value of Target type"); 192 break; 193 case G4ErrorTarget_PlaneSurface: 194 case G4ErrorTarget_CylindricalSurface: 195 const auto surfTarget= static_cast<const G4ErrorSurfaceTarget*>(target); 196 normal = surfTarget->GetTangentPlane(point).normal().unit(); 197 *valid = true; 198 break; 199 200 // default: 201 // normal= G4ThreeVector( 0.0, 0.0, 0.0 ); 202 // *valid = false; 203 // G4Exception("G4ErrorPropagationNavigator::GetGlobalExitNormal", 204 // "Geometry:003", 205 // FatalException, "Impossible value of Target type"); 206 // break; 207 } 208 } 209 return normal; 210 } 211 212