Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4MagInt_Driver implementation 27 // 28 // V.Grichine, 07.10.1996 - Created 29 // W.Wander, 28.01.1998 - Added ability for low order integrators 30 // J.Apostolakis, 08.11.2001 - Respect minimum step in AccurateAdvance 31 // -------------------------------------------------------------------- 32 33 #include <iomanip> 34 35 #include "globals.hh" 36 #include "G4SystemOfUnits.hh" 37 #include "G4GeometryTolerance.hh" 38 #include "G4MagIntegratorDriver.hh" 39 #include "G4FieldTrack.hh" 40 41 #ifdef G4DEBUG_FIELD 42 #include "G4DriverReporter.hh" 43 #endif 44 45 // --------------------------------------------------------- 46 47 // Constructor 48 // 49 G4MagInt_Driver::G4MagInt_Driver( G4double hminimum, 50 G4MagIntegratorStepper* pStepper, 51 G4int numComponents, 52 G4int statisticsVerbose) 53 : fNoIntegrationVariables(numComponents), 54 fNoVars( std::max( fNoIntegrationVariables, fMinNoVars )), 55 fStatisticsVerboseLevel(statisticsVerbose) 56 { 57 // In order to accomodate "Laboratory Time", which is [7], fMinNoVars=8 58 // is required. For proper time of flight and spin, fMinNoVars must be 12 59 60 RenewStepperAndAdjust( pStepper ); 61 fMinimumStep = hminimum; 62 63 fMaxNoSteps = fMaxStepBase / pIntStepper->IntegratorOrder(); 64 #ifdef G4DEBUG_FIELD 65 fVerboseLevel=2; 66 #endif 67 68 if( (fVerboseLevel > 0) || (fStatisticsVerboseLevel > 1) ) 69 { 70 G4cout << "MagIntDriver version: Accur-Adv: " 71 << "invE_nS, QuickAdv-2sqrt with Statistics " 72 #ifdef G4FLD_STATS 73 << " enabled " 74 #else 75 << " disabled " 76 #endif 77 << G4endl; 78 } 79 } 80 81 // --------------------------------------------------------- 82 83 // Destructor 84 // 85 G4MagInt_Driver::~G4MagInt_Driver() 86 { 87 if( fStatisticsVerboseLevel > 1 ) 88 { 89 PrintStatisticsReport(); 90 } 91 } 92 93 // --------------------------------------------------------- 94 95 G4bool 96 G4MagInt_Driver::AccurateAdvance(G4FieldTrack& y_current, 97 G4double hstep, 98 G4double eps, 99 G4double hinitial ) 100 { 101 // Runge-Kutta driver with adaptive stepsize control. Integrate starting 102 // values at y_current over hstep x2 with accuracy eps. 103 // On output ystart is replaced by values at the end of the integration 104 // interval. RightHandSide is the right-hand side of ODE system. 105 // The source is similar to odeint routine from NRC p.721-722 . 106 107 G4int nstp, i; 108 G4double x, hnext, hdid, h; 109 110 #ifdef G4DEBUG_FIELD 111 G4int no_warnings = 0; 112 static G4int dbg = 1; 113 static G4int nStpPr = 50; // For debug printing of long integrations 114 G4double ySubStepStart[G4FieldTrack::ncompSVEC]; 115 G4FieldTrack yFldTrkStart(y_current); 116 #endif 117 118 G4double y[G4FieldTrack::ncompSVEC] = {0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.}; 119 G4double dydx[G4FieldTrack::ncompSVEC] = {0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.}; 120 G4double ystart[G4FieldTrack::ncompSVEC] = {0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.}; 121 G4double yEnd[G4FieldTrack::ncompSVEC] = {0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.}; 122 G4double x1, x2; 123 G4bool succeeded = true; 124 125 G4double startCurveLength; 126 127 const G4int nvar = fNoVars; 128 129 G4FieldTrack yStartFT(y_current); 130 131 // Ensure that hstep > 0 132 // 133 if( hstep <= 0.0 ) 134 { 135 if( hstep == 0.0 ) 136 { 137 std::ostringstream message; 138 message << "Proposed step is zero; hstep = " << hstep << " !"; 139 G4Exception("G4MagInt_Driver::AccurateAdvance()", 140 "GeomField1001", JustWarning, message); 141 return succeeded; 142 } 143 144 std::ostringstream message; 145 message << "Invalid run condition." << G4endl 146 << "Proposed step is negative; hstep = " << hstep << "." << G4endl 147 << "Requested step cannot be negative! Aborting event."; 148 G4Exception("G4MagInt_Driver::AccurateAdvance()", 149 "GeomField0003", EventMustBeAborted, message); 150 return false; 151 } 152 153 y_current.DumpToArray( ystart ); 154 155 startCurveLength= y_current.GetCurveLength(); 156 x1= startCurveLength; 157 x2= x1 + hstep; 158 159 if ( (hinitial > 0.0) && (hinitial < hstep) 160 && (hinitial > perMillion * hstep) ) 161 { 162 h = hinitial; 163 } 164 else // Initial Step size "h" defaults to the full interval 165 { 166 h = hstep; 167 } 168 169 x = x1; 170 171 for ( i=0; i<nvar; ++i) { y[i] = ystart[i]; } 172 173 G4bool lastStep= false; 174 nstp = 1; 175 176 do 177 { 178 G4ThreeVector StartPos( y[0], y[1], y[2] ); 179 180 #ifdef G4DEBUG_FIELD 181 G4double xSubStepStart= x; 182 for (i=0; i<nvar; ++i) { ySubStepStart[i] = y[i]; } 183 yFldTrkStart.LoadFromArray(y, fNoIntegrationVariables); 184 yFldTrkStart.SetCurveLength(x); 185 #endif 186 187 pIntStepper->RightHandSide( y, dydx ); 188 ++fNoTotalSteps; 189 190 // Perform the Integration 191 // 192 if( h > fMinimumStep ) 193 { 194 OneGoodStep(y,dydx,x,h,eps,hdid,hnext) ; 195 //-------------------------------------- 196 #ifdef G4DEBUG_FIELD 197 if (dbg>2) 198 { 199 // PrintStatus( ySubStepStart, xSubStepStart, y, x, h, nstp); // Only 200 G4DriverReporter::PrintStatus( ySubStepStart, xSubStepStart, y, x, h, nstp, nvar); 201 } 202 #endif 203 } 204 else 205 { 206 G4FieldTrack yFldTrk( G4ThreeVector(0,0,0), 207 G4ThreeVector(0,0,0), 0., 0., 0., 0. ); 208 G4double dchord_step, dyerr, dyerr_len; // What to do with these ? 209 yFldTrk.LoadFromArray(y, fNoIntegrationVariables); 210 yFldTrk.SetCurveLength( x ); 211 212 QuickAdvance( yFldTrk, dydx, h, dchord_step, dyerr_len ); 213 //----------------------------------------------------- 214 215 yFldTrk.DumpToArray(y); 216 217 #ifdef G4FLD_STATS 218 ++fNoSmallSteps; 219 if ( dyerr_len > fDyerr_max ) { fDyerr_max = dyerr_len; } 220 fDyerrPos_smTot += dyerr_len; 221 fSumH_sm += h; // Length total for 'small' steps 222 if (nstp==1) { ++fNoInitialSmallSteps; } 223 #endif 224 #ifdef G4DEBUG_FIELD 225 if (dbg>1) 226 { 227 if(fNoSmallSteps<2) { PrintStatus(ySubStepStart, x1, y, x, h, -nstp); } 228 G4cout << "Another sub-min step, no " << fNoSmallSteps 229 << " of " << fNoTotalSteps << " this time " << nstp << G4endl; 230 PrintStatus( ySubStepStart, x1, y, x, h, nstp); // Only this 231 G4cout << " dyerr= " << dyerr_len << " relative = " << dyerr_len / h 232 << " epsilon= " << eps << " hstep= " << hstep 233 << " h= " << h << " hmin= " << fMinimumStep << G4endl; 234 } 235 #endif 236 if( h == 0.0 ) 237 { 238 G4Exception("G4MagInt_Driver::AccurateAdvance()", 239 "GeomField0003", FatalException, 240 "Integration Step became Zero!"); 241 } 242 dyerr = dyerr_len / h; 243 hdid = h; 244 x += hdid; 245 246 // Compute suggested new step 247 hnext = ComputeNewStepSize( dyerr/eps, h); 248 } 249 250 G4ThreeVector EndPos( y[0], y[1], y[2] ); 251 252 #ifdef G4DEBUG_FIELD 253 if( (dbg>0) && (dbg<=2) && (nstp>nStpPr)) 254 { 255 if( nstp==nStpPr ) { G4cout << "***** Many steps ****" << G4endl; } 256 G4cout << "MagIntDrv: " ; 257 G4cout << "hdid=" << std::setw(12) << hdid << " " 258 << "hnext=" << std::setw(12) << hnext << " " 259 << "hstep=" << std::setw(12) << hstep << " (requested) " 260 << G4endl; 261 PrintStatus( ystart, x1, y, x, h, (nstp==nStpPr) ? -nstp: nstp); 262 } 263 #endif 264 265 // Check the endpoint 266 G4double endPointDist= (EndPos-StartPos).mag(); 267 if ( endPointDist >= hdid*(1.+perMillion) ) 268 { 269 ++fNoBadSteps; 270 271 // Issue a warning only for gross differences - 272 // we understand how small difference occur. 273 if ( endPointDist >= hdid*(1.+perThousand) ) 274 { 275 #ifdef G4DEBUG_FIELD 276 if (dbg) 277 { 278 WarnEndPointTooFar ( endPointDist, hdid, eps, dbg ); 279 G4cerr << " Total steps: bad " << fNoBadSteps 280 << " current h= " << hdid << G4endl; 281 PrintStatus( ystart, x1, y, x, hstep, no_warnings?nstp:-nstp); 282 } 283 ++no_warnings; 284 #endif 285 } 286 } 287 288 // Avoid numerous small last steps 289 if( (h < eps * hstep) || (h < fSmallestFraction * startCurveLength) ) 290 { 291 // No more integration -- the next step will not happen 292 lastStep = true; 293 } 294 else 295 { 296 // Check the proposed next stepsize 297 if(std::fabs(hnext) <= Hmin()) 298 { 299 #ifdef G4DEBUG_FIELD 300 // If simply a very small interval is being integrated, do not warn 301 if( (x < x2 * (1-eps) ) && // The last step can be small: OK 302 (std::fabs(hstep) > Hmin()) ) // and if we are asked, it's OK 303 { 304 if(dbg>0) 305 { 306 WarnSmallStepSize( hnext, hstep, h, x-x1, nstp ); 307 PrintStatus( ystart, x1, y, x, hstep, no_warnings?nstp:-nstp); 308 } 309 ++no_warnings; 310 } 311 #endif 312 // Make sure that the next step is at least Hmin. 313 h = Hmin(); 314 } 315 else 316 { 317 h = hnext; 318 } 319 320 // Ensure that the next step does not overshoot 321 if ( x+h > x2 ) 322 { // When stepsize overshoots, decrease it! 323 h = x2 - x ; // Must cope with difficult rounding-error 324 } // issues if hstep << x2 325 326 if ( h == 0.0 ) 327 { 328 // Cannot progress - accept this as last step - by default 329 lastStep = true; 330 #ifdef G4DEBUG_FIELD 331 if (dbg>2) 332 { 333 int prec= G4cout.precision(12); 334 G4cout << "Warning: G4MagIntegratorDriver::AccurateAdvance" 335 << G4endl 336 << " Integration step 'h' became " 337 << h << " due to roundoff. " << G4endl 338 << " Calculated as difference of x2= "<< x2 << " and x=" << x 339 << " Forcing termination of advance." << G4endl; 340 G4cout.precision(prec); 341 } 342 #endif 343 } 344 } 345 } while ( ((++nstp)<=fMaxNoSteps) && (x < x2) && (!lastStep) ); 346 // Loop checking, 07.10.2016, J. Apostolakis 347 348 // Have we reached the end ? 349 // --> a better test might be x-x2 > an_epsilon 350 351 succeeded = (x>=x2); // If it was a "forced" last step 352 353 for (i=0; i<nvar; ++i) { yEnd[i] = y[i]; } 354 355 // Put back the values. 356 y_current.LoadFromArray( yEnd, fNoIntegrationVariables ); 357 y_current.SetCurveLength( x ); 358 359 if(nstp > fMaxNoSteps) 360 { 361 succeeded = false; 362 #ifdef G4DEBUG_FIELD 363 ++no_warnings; 364 if (dbg) 365 { 366 WarnTooManyStep( x1, x2, x ); // Issue WARNING 367 PrintStatus( yEnd, x1, y, x, hstep, -nstp); 368 } 369 #endif 370 } 371 372 #ifdef G4DEBUG_FIELD 373 if( dbg && no_warnings ) 374 { 375 G4cerr << "G4MagIntegratorDriver exit status: no-steps " << nstp << G4endl; 376 PrintStatus( yEnd, x1, y, x, hstep, nstp); 377 } 378 #endif 379 380 return succeeded; 381 } // end of AccurateAdvance ........................... 382 383 // --------------------------------------------------------- 384 385 void 386 G4MagInt_Driver::WarnSmallStepSize( G4double hnext, G4double hstep, 387 G4double h, G4double xDone, 388 G4int nstp) 389 { 390 static G4ThreadLocal G4int noWarningsIssued = 0; 391 const G4int maxNoWarnings = 10; // Number of verbose warnings 392 std::ostringstream message; 393 if( (noWarningsIssued < maxNoWarnings) || fVerboseLevel > 10 ) 394 { 395 message << "The stepsize for the next iteration, " << hnext 396 << ", is too small - in Step number " << nstp << "." << G4endl 397 << "The minimum for the driver is " << Hmin() << G4endl 398 << "Requested integr. length was " << hstep << " ." << G4endl 399 << "The size of this sub-step was " << h << " ." << G4endl 400 << "The integrations has already gone " << xDone; 401 } 402 else 403 { 404 message << "Too small 'next' step " << hnext 405 << ", step-no: " << nstp << G4endl 406 << ", this sub-step: " << h 407 << ", req_tot_len: " << hstep 408 << ", done: " << xDone << ", min: " << Hmin(); 409 } 410 G4Exception("G4MagInt_Driver::WarnSmallStepSize()", "GeomField1001", 411 JustWarning, message); 412 ++noWarningsIssued; 413 } 414 415 // --------------------------------------------------------- 416 417 void 418 G4MagInt_Driver::WarnTooManyStep( G4double x1start, 419 G4double x2end, 420 G4double xCurrent ) 421 { 422 std::ostringstream message; 423 message << "The number of steps used in the Integration driver" 424 << " (Runge-Kutta) is too many." << G4endl 425 << "Integration of the interval was not completed !" << G4endl 426 << "Only a " << (xCurrent-x1start)*100/(x2end-x1start) 427 << " % fraction of it was done."; 428 G4Exception("G4MagInt_Driver::WarnTooManyStep()", "GeomField1001", 429 JustWarning, message); 430 } 431 432 // --------------------------------------------------------- 433 434 void 435 G4MagInt_Driver::WarnEndPointTooFar (G4double endPointDist, 436 G4double h , 437 G4double eps, 438 G4int dbg) 439 { 440 static G4ThreadLocal G4double maxRelError = 0.0; 441 G4bool isNewMax, prNewMax; 442 443 isNewMax = endPointDist > (1.0 + maxRelError) * h; 444 prNewMax = endPointDist > (1.0 + 1.05 * maxRelError) * h; 445 if( isNewMax ) { maxRelError= endPointDist / h - 1.0; } 446 447 if( (dbg != 0) && (h > G4GeometryTolerance::GetInstance()->GetSurfaceTolerance()) 448 && ( (dbg>1) || prNewMax || (endPointDist >= h*(1.+eps) ) ) ) 449 { 450 static G4ThreadLocal G4int noWarnings = 0; 451 std::ostringstream message; 452 if( (noWarnings++ < 10) || (dbg>2) ) 453 { 454 message << "The integration produced an end-point which " << G4endl 455 << "is further from the start-point than the curve length." 456 << G4endl; 457 } 458 message << " Distance of endpoints = " << endPointDist 459 << ", curve length = " << h << G4endl 460 << " Difference (curveLen-endpDist)= " << (h - endPointDist) 461 << ", relative = " << (h-endPointDist) / h 462 << ", epsilon = " << eps; 463 G4Exception("G4MagInt_Driver::WarnEndPointTooFar()", "GeomField1001", 464 JustWarning, message); 465 } 466 } 467 468 // --------------------------------------------------------- 469 470 void 471 G4MagInt_Driver::OneGoodStep( G4double y[], // InOut 472 const G4double dydx[], 473 G4double& x, // InOut 474 G4double htry, 475 G4double eps_rel_max, 476 G4double& hdid, // Out 477 G4double& hnext ) // Out 478 479 // Driver for one Runge-Kutta Step with monitoring of local truncation error 480 // to ensure accuracy and adjust stepsize. Input are dependent variable 481 // array y[0,...,5] and its derivative dydx[0,...,5] at the 482 // starting value of the independent variable x . Also input are stepsize 483 // to be attempted htry, and the required accuracy eps. On output y and x 484 // are replaced by their new values, hdid is the stepsize that was actually 485 // accomplished, and hnext is the estimated next stepsize. 486 // This is similar to the function rkqs from the book: 487 // Numerical Recipes in C: The Art of Scientific Computing (NRC), Second 488 // Edition, by William H. Press, Saul A. Teukolsky, William T. 489 // Vetterling, and Brian P. Flannery (Cambridge University Press 1992), 490 // 16.2 Adaptive StepSize Control for Runge-Kutta, p. 719 491 492 { 493 G4double errmax_sq; 494 G4double h, htemp, xnew ; 495 496 G4double yerr[G4FieldTrack::ncompSVEC], ytemp[G4FieldTrack::ncompSVEC]; 497 498 h = htry ; // Set stepsize to the initial trial value 499 500 G4double inv_eps_vel_sq = 1.0 / (eps_rel_max*eps_rel_max); 501 502 G4double errpos_sq = 0.0; // square of displacement error 503 G4double errvel_sq = 0.0; // square of momentum vector difference 504 G4double errspin_sq = 0.0; // square of spin vector difference 505 506 const G4int max_trials=100; 507 508 G4ThreeVector Spin(y[9],y[10],y[11]); 509 G4double spin_mag2 = Spin.mag2(); 510 G4bool hasSpin = (spin_mag2 > 0.0); 511 512 for (G4int iter=0; iter<max_trials; ++iter) 513 { 514 pIntStepper-> Stepper(y,dydx,h,ytemp,yerr); 515 // ******* 516 G4double eps_pos = eps_rel_max * std::max(h, fMinimumStep); 517 G4double inv_eps_pos_sq = 1.0 / (eps_pos*eps_pos); 518 519 // Evaluate accuracy 520 // 521 errpos_sq = sqr(yerr[0]) + sqr(yerr[1]) + sqr(yerr[2]) ; 522 errpos_sq *= inv_eps_pos_sq; // Scale relative to required tolerance 523 524 // Accuracy for momentum 525 G4double magvel_sq= sqr(y[3]) + sqr(y[4]) + sqr(y[5]) ; 526 G4double sumerr_sq = sqr(yerr[3]) + sqr(yerr[4]) + sqr(yerr[5]) ; 527 if( magvel_sq > 0.0 ) 528 { 529 errvel_sq = sumerr_sq / magvel_sq; 530 } 531 else 532 { 533 std::ostringstream message; 534 message << "Found case of zero momentum." << G4endl 535 << "- iteration= " << iter << "; h= " << h; 536 G4Exception("G4MagInt_Driver::OneGoodStep()", 537 "GeomField1001", JustWarning, message); 538 errvel_sq = sumerr_sq; 539 } 540 errvel_sq *= inv_eps_vel_sq; 541 errmax_sq = std::max( errpos_sq, errvel_sq ); // Square of maximum error 542 543 if( hasSpin ) 544 { 545 // Accuracy for spin 546 errspin_sq = ( sqr(yerr[9]) + sqr(yerr[10]) + sqr(yerr[11]) ) 547 / spin_mag2; // ( sqr(y[9]) + sqr(y[10]) + sqr(y[11]) ); 548 errspin_sq *= inv_eps_vel_sq; 549 errmax_sq = std::max( errmax_sq, errspin_sq ); 550 } 551 552 if ( errmax_sq <= 1.0 ) { break; } // Step succeeded. 553 554 // Step failed; compute the size of retrial Step. 555 htemp = GetSafety() * h * std::pow( errmax_sq, 0.5*GetPshrnk() ); 556 557 if (htemp >= 0.1*h) { h = htemp; } // Truncation error too large, 558 else { h = 0.1*h; } // reduce stepsize, but no more 559 // than a factor of 10 560 xnew = x + h; 561 if(xnew == x) 562 { 563 std::ostringstream message; 564 message << "Stepsize underflow in Stepper !" << G4endl 565 << "- Step's start x=" << x << " and end x= " << xnew 566 << " are equal !! " << G4endl 567 << " Due to step-size= " << h 568 << ". Note that input step was " << htry; 569 G4Exception("G4MagInt_Driver::OneGoodStep()", 570 "GeomField1001", JustWarning, message); 571 break; 572 } 573 } 574 575 // Compute size of next Step 576 if (errmax_sq > errcon*errcon) 577 { 578 hnext = GetSafety()*h*std::pow(errmax_sq, 0.5*GetPgrow()); 579 } 580 else 581 { 582 hnext = max_stepping_increase*h ; // No more than a factor of 5 increase 583 } 584 x += (hdid = h); 585 586 for(G4int k=0; k<fNoIntegrationVariables; ++k) { y[k] = ytemp[k]; } 587 588 return; 589 } 590 591 //---------------------------------------------------------------------- 592 593 // QuickAdvance just tries one Step - it does not ensure accuracy 594 // 595 G4bool G4MagInt_Driver::QuickAdvance(G4FieldTrack& y_posvel, // INOUT 596 const G4double dydx[], 597 G4double hstep, // In 598 G4double& dchord_step, 599 G4double& dyerr_pos_sq, 600 G4double& dyerr_mom_rel_sq ) 601 { 602 G4Exception("G4MagInt_Driver::QuickAdvance()", "GeomField0001", 603 FatalException, "Not yet implemented."); 604 605 // Use the parameters of this method, to please compiler 606 // 607 dchord_step = dyerr_pos_sq = hstep * hstep * dydx[0]; 608 dyerr_mom_rel_sq = y_posvel.GetPosition().mag2(); 609 return true; 610 } 611 612 //---------------------------------------------------------------------- 613 614 G4bool G4MagInt_Driver::QuickAdvance(G4FieldTrack& y_posvel, // INOUT 615 const G4double dydx[], 616 G4double hstep, // In 617 G4double& dchord_step, 618 G4double& dyerr ) 619 { 620 G4double dyerr_pos_sq, dyerr_mom_rel_sq; 621 G4double yerr_vec[G4FieldTrack::ncompSVEC], 622 yarrin[G4FieldTrack::ncompSVEC], yarrout[G4FieldTrack::ncompSVEC]; 623 G4double s_start; 624 G4double dyerr_mom_sq, vel_mag_sq, inv_vel_mag_sq; 625 626 // Move data into array 627 y_posvel.DumpToArray( yarrin ); // yarrin <== y_posvel 628 s_start = y_posvel.GetCurveLength(); 629 630 // Do an Integration Step 631 pIntStepper-> Stepper(yarrin, dydx, hstep, yarrout, yerr_vec) ; 632 633 // Estimate curve-chord distance 634 dchord_step= pIntStepper-> DistChord(); 635 636 // Put back the values. yarrout ==> y_posvel 637 y_posvel.LoadFromArray( yarrout, fNoIntegrationVariables ); 638 y_posvel.SetCurveLength( s_start + hstep ); 639 640 #ifdef G4DEBUG_FIELD 641 if(fVerboseLevel>2) 642 { 643 G4cout << "G4MagIntDrv: Quick Advance" << G4endl; 644 PrintStatus( yarrin, s_start, yarrout, s_start+hstep, hstep, 1); 645 } 646 #endif 647 648 // A single measure of the error 649 // TO-DO : account for energy, spin, ... ? 650 vel_mag_sq = ( sqr(yarrout[3])+sqr(yarrout[4])+sqr(yarrout[5]) ); 651 inv_vel_mag_sq = 1.0 / vel_mag_sq; 652 dyerr_pos_sq = ( sqr(yerr_vec[0])+sqr(yerr_vec[1])+sqr(yerr_vec[2])); 653 dyerr_mom_sq = ( sqr(yerr_vec[3])+sqr(yerr_vec[4])+sqr(yerr_vec[5])); 654 dyerr_mom_rel_sq = dyerr_mom_sq * inv_vel_mag_sq; 655 656 // Calculate also the change in the momentum squared also ??? 657 // G4double veloc_square = y_posvel.GetVelocity().mag2(); 658 // ... 659 660 #ifdef RETURN_A_NEW_STEP_LENGTH 661 // The following step cannot be done here because "eps" is not known. 662 dyerr_len = std::sqrt( dyerr_len_sq ); 663 dyerr_len_sq /= eps ; 664 665 // Look at the velocity deviation ? 666 // sqr(yerr_vec[3])+sqr(yerr_vec[4])+sqr(yerr_vec[5])); 667 668 // Set suggested new step 669 hstep = ComputeNewStepSize( dyerr_len, hstep); 670 #endif 671 672 if( dyerr_pos_sq > ( dyerr_mom_rel_sq * sqr(hstep) ) ) 673 { 674 dyerr = std::sqrt(dyerr_pos_sq); 675 } 676 else 677 { 678 // Scale it to the current step size - for now 679 dyerr = std::sqrt(dyerr_mom_rel_sq) * hstep; 680 } 681 682 return true; 683 } 684 685 // -------------------------------------------------------------------------- 686 687 #ifdef QUICK_ADV_ARRAY_IN_AND_OUT 688 G4bool G4MagInt_Driver::QuickAdvance(G4double yarrin[], // In 689 const G4double dydx[], 690 G4double hstep, // In 691 G4double yarrout[], 692 G4double& dchord_step, 693 G4double& dyerr ) // In length 694 { 695 G4Exception("G4MagInt_Driver::QuickAdvance()", "GeomField0001", 696 FatalException, "Not yet implemented."); 697 dyerr = dchord_step = hstep * yarrin[0] * dydx[0]; 698 yarrout[0]= yarrin[0]; 699 } 700 #endif 701 702 // -------------------------------------------------------------------------- 703 704 // This method computes new step sizes - but does not limit changes to 705 // within certain factors 706 // 707 G4double G4MagInt_Driver:: 708 ComputeNewStepSize_WithoutReductionLimit(G4double errMaxNorm, // max error (normalised) 709 G4double hstepCurrent) // current step size 710 { 711 G4double hnew; 712 713 // Compute size of next Step for a failed step 714 if(errMaxNorm > 1.0 ) 715 { 716 // Step failed; compute the size of retrial Step. 717 hnew = GetSafety()*hstepCurrent*std::pow(errMaxNorm,GetPshrnk()) ; 718 } 719 else if(errMaxNorm > 0.0 ) 720 { 721 // Compute size of next Step for a successful step 722 hnew = GetSafety()*hstepCurrent*std::pow(errMaxNorm,GetPgrow()) ; 723 } 724 else 725 { 726 // if error estimate is zero (possible) or negative (dubious) 727 hnew = max_stepping_increase * hstepCurrent; 728 } 729 730 return hnew; 731 } 732 733 // --------------------------------------------------------------------------- 734 735 G4double 736 G4MagInt_Driver::ComputeNewStepSize( 737 G4double errMaxNorm, // max error (normalised) 738 G4double hstepCurrent) // current step size 739 { 740 // Legacy behaviour: 741 return ComputeNewStepSize_WithoutReductionLimit( errMaxNorm, hstepCurrent ); 742 // 'Improved' behaviour - at least more consistent with other step estimates: 743 // return ComputeNewStepSize_WithinLimits( errMaxNorm, hstepCurrent ); 744 } 745 746 // This method computes new step sizes limiting changes within certain factors 747 // 748 // It shares its logic with AccurateAdvance. 749 // They are kept separate currently for optimisation. 750 // 751 G4double 752 G4MagInt_Driver::ComputeNewStepSize_WithinLimits( 753 G4double errMaxNorm, // max error (normalised) 754 G4double hstepCurrent) // current step size 755 { 756 G4double hnew; 757 758 // Compute size of next Step for a failed step 759 if (errMaxNorm > 1.0 ) 760 { 761 // Step failed; compute the size of retrial Step. 762 hnew = GetSafety()*hstepCurrent*std::pow(errMaxNorm,GetPshrnk()) ; 763 764 if (hnew < max_stepping_decrease*hstepCurrent) 765 { 766 hnew = max_stepping_decrease*hstepCurrent ; 767 // reduce stepsize, but no more 768 // than this factor (value= 1/10) 769 } 770 } 771 else 772 { 773 // Compute size of next Step for a successful step 774 if (errMaxNorm > errcon) 775 { hnew = GetSafety()*hstepCurrent*std::pow(errMaxNorm,GetPgrow()); } 776 else // No more than a factor of 5 increase 777 { hnew = max_stepping_increase * hstepCurrent; } 778 } 779 return hnew; 780 } 781 782 // --------------------------------------------------------------------------- 783 784 void G4MagInt_Driver::PrintStatus( const G4double* StartArr, 785 G4double xstart, 786 const G4double* CurrentArr, 787 G4double xcurrent, 788 G4double requestStep, 789 G4int subStepNo ) 790 // Potentially add as arguments: 791 // <dydx> - as Initial Force 792 // stepTaken(hdid) - last step taken 793 // nextStep (hnext) - proposal for size 794 { 795 G4FieldTrack StartFT(G4ThreeVector(0,0,0), 796 G4ThreeVector(0,0,0), 0., 0., 0., 0. ); 797 G4FieldTrack CurrentFT (StartFT); 798 799 StartFT.LoadFromArray( StartArr, fNoIntegrationVariables); 800 StartFT.SetCurveLength( xstart); 801 CurrentFT.LoadFromArray( CurrentArr, fNoIntegrationVariables); 802 CurrentFT.SetCurveLength( xcurrent ); 803 804 PrintStatus(StartFT, CurrentFT, requestStep, subStepNo ); 805 } 806 807 // --------------------------------------------------------------------------- 808 809 void G4MagInt_Driver::PrintStatus(const G4FieldTrack& StartFT, 810 const G4FieldTrack& CurrentFT, 811 G4double requestStep, 812 G4int subStepNo) 813 { 814 G4int verboseLevel= fVerboseLevel; 815 const G4int noPrecision = 5; 816 G4long oldPrec= G4cout.precision(noPrecision); 817 // G4cout.setf(ios_base::fixed,ios_base::floatfield); 818 819 const G4ThreeVector StartPosition= StartFT.GetPosition(); 820 const G4ThreeVector StartUnitVelocity= StartFT.GetMomentumDir(); 821 const G4ThreeVector CurrentPosition= CurrentFT.GetPosition(); 822 const G4ThreeVector CurrentUnitVelocity= CurrentFT.GetMomentumDir(); 823 824 G4double DotStartCurrentVeloc= StartUnitVelocity.dot(CurrentUnitVelocity); 825 826 G4double step_len= CurrentFT.GetCurveLength() - StartFT.GetCurveLength(); 827 G4double subStepSize = step_len; 828 829 if( (subStepNo <= 1) || (verboseLevel > 3) ) 830 { 831 subStepNo = - subStepNo; // To allow printing banner 832 833 G4cout << std::setw( 6) << " " << std::setw( 25) 834 << " G4MagInt_Driver: Current Position and Direction" << " " 835 << G4endl; 836 G4cout << std::setw( 5) << "Step#" << " " 837 << std::setw( 7) << "s-curve" << " " 838 << std::setw( 9) << "X(mm)" << " " 839 << std::setw( 9) << "Y(mm)" << " " 840 << std::setw( 9) << "Z(mm)" << " " 841 << std::setw( 8) << " N_x " << " " 842 << std::setw( 8) << " N_y " << " " 843 << std::setw( 8) << " N_z " << " " 844 << std::setw( 8) << " N^2-1 " << " " 845 << std::setw(10) << " N(0).N " << " " 846 << std::setw( 7) << "KinEner " << " " 847 << std::setw(12) << "Track-l" << " " // Add the Sub-step ?? 848 << std::setw(12) << "Step-len" << " " 849 << std::setw(12) << "Step-len" << " " 850 << std::setw( 9) << "ReqStep" << " " 851 << G4endl; 852 } 853 854 if( (subStepNo <= 0) ) 855 { 856 PrintStat_Aux( StartFT, requestStep, 0., 857 0, 0.0, 1.0); 858 } 859 860 if( verboseLevel <= 3 ) 861 { 862 G4cout.precision(noPrecision); 863 PrintStat_Aux( CurrentFT, requestStep, step_len, 864 subStepNo, subStepSize, DotStartCurrentVeloc ); 865 } 866 867 G4cout.precision(oldPrec); 868 } 869 870 // --------------------------------------------------------------------------- 871 872 void G4MagInt_Driver::PrintStat_Aux(const G4FieldTrack& aFieldTrack, 873 G4double requestStep, 874 G4double step_len, 875 G4int subStepNo, 876 G4double subStepSize, 877 G4double dotVeloc_StartCurr) 878 { 879 const G4ThreeVector Position = aFieldTrack.GetPosition(); 880 const G4ThreeVector UnitVelocity = aFieldTrack.GetMomentumDir(); 881 882 if( subStepNo >= 0) 883 { 884 G4cout << std::setw( 5) << subStepNo << " "; 885 } 886 else 887 { 888 G4cout << std::setw( 5) << "Start" << " "; 889 } 890 G4double curveLen= aFieldTrack.GetCurveLength(); 891 G4cout << std::setw( 7) << curveLen; 892 G4cout << std::setw( 9) << Position.x() << " " 893 << std::setw( 9) << Position.y() << " " 894 << std::setw( 9) << Position.z() << " " 895 << std::setw( 8) << UnitVelocity.x() << " " 896 << std::setw( 8) << UnitVelocity.y() << " " 897 << std::setw( 8) << UnitVelocity.z() << " "; 898 G4long oldprec= G4cout.precision(3); 899 G4cout << std::setw( 8) << UnitVelocity.mag2()-1.0 << " "; 900 G4cout.precision(6); 901 G4cout << std::setw(10) << dotVeloc_StartCurr << " "; 902 G4cout.precision(oldprec); 903 G4cout << std::setw( 7) << aFieldTrack.GetKineticEnergy(); 904 G4cout << std::setw(12) << step_len << " "; 905 906 static G4ThreadLocal G4double oldCurveLength = 0.0; 907 static G4ThreadLocal G4double oldSubStepLength = 0.0; 908 static G4ThreadLocal G4int oldSubStepNo = -1; 909 910 G4double subStep_len = 0.0; 911 if( curveLen > oldCurveLength ) 912 { 913 subStep_len= curveLen - oldCurveLength; 914 } 915 else if (subStepNo == oldSubStepNo) 916 { 917 subStep_len= oldSubStepLength; 918 } 919 oldCurveLength= curveLen; 920 oldSubStepLength= subStep_len; 921 922 G4cout << std::setw(12) << subStep_len << " "; 923 G4cout << std::setw(12) << subStepSize << " "; 924 if( requestStep != -1.0 ) 925 { 926 G4cout << std::setw( 9) << requestStep << " "; 927 } 928 else 929 { 930 G4cout << std::setw( 9) << " InitialStep " << " "; 931 } 932 G4cout << G4endl; 933 } 934 935 // --------------------------------------------------------------------------- 936 937 void G4MagInt_Driver::PrintStatisticsReport() 938 { 939 G4int noPrecBig = 6; 940 G4long oldPrec = G4cout.precision(noPrecBig); 941 942 G4cout << "G4MagInt_Driver Statistics of steps undertaken. " << G4endl; 943 G4cout << "G4MagInt_Driver: Number of Steps: " 944 << " Total= " << fNoTotalSteps 945 << " Bad= " << fNoBadSteps 946 << " Small= " << fNoSmallSteps 947 << " Non-initial small= " << (fNoSmallSteps-fNoInitialSmallSteps) 948 << G4endl; 949 G4cout.precision(oldPrec); 950 } 951 952 // --------------------------------------------------------------------------- 953 954 void G4MagInt_Driver::SetSmallestFraction(G4double newFraction) 955 { 956 if( (newFraction > 1.e-16) && (newFraction < 1e-8) ) 957 { 958 fSmallestFraction= newFraction; 959 } 960 else 961 { 962 std::ostringstream message; 963 message << "Smallest Fraction not changed. " << G4endl 964 << " Proposed value was " << newFraction << G4endl 965 << " Value must be between 1.e-8 and 1.e-16"; 966 G4Exception("G4MagInt_Driver::SetSmallestFraction()", 967 "GeomField1001", JustWarning, message); 968 } 969 } 970 971 void G4MagInt_Driver:: 972 GetDerivatives(const G4FieldTrack& y_curr, G4double* dydx) const 973 { 974 G4double ytemp[G4FieldTrack::ncompSVEC]; 975 y_curr.DumpToArray(ytemp); 976 pIntStepper->RightHandSide(ytemp, dydx); 977 // Avoid virtual call for GetStepper 978 // Was: GetStepper()->ComputeRightHandSide(ytemp, dydx); 979 } 980 981 void G4MagInt_Driver::GetDerivatives(const G4FieldTrack& track, 982 G4double dydx[], 983 G4double field[]) const 984 { 985 G4double ytemp[G4FieldTrack::ncompSVEC]; 986 track.DumpToArray(ytemp); 987 pIntStepper->RightHandSide(ytemp, dydx, field); 988 } 989 990 G4EquationOfMotion* G4MagInt_Driver::GetEquationOfMotion() 991 { 992 return pIntStepper->GetEquationOfMotion(); 993 } 994 995 void G4MagInt_Driver::SetEquationOfMotion(G4EquationOfMotion *equation) 996 { 997 pIntStepper->SetEquationOfMotion(equation); 998 } 999 1000 const G4MagIntegratorStepper* G4MagInt_Driver::GetStepper() const 1001 { 1002 return pIntStepper; 1003 } 1004 1005 G4MagIntegratorStepper* G4MagInt_Driver::GetStepper() 1006 { 1007 return pIntStepper; 1008 } 1009 1010 void G4MagInt_Driver:: 1011 RenewStepperAndAdjust(G4MagIntegratorStepper* pItsStepper) 1012 { 1013 pIntStepper = pItsStepper; 1014 ReSetParameters(); 1015 } 1016 1017 void G4MagInt_Driver::StreamInfo( std::ostream& os ) const 1018 { 1019 os << "State of G4MagInt_Driver: " << std::endl; 1020 os << " Max number of Steps = " << fMaxNoSteps 1021 << " (base # = " << fMaxStepBase << " )" << std::endl; 1022 os << " Safety factor = " << safety << std::endl; 1023 os << " Power - shrink = " << pshrnk << std::endl; 1024 os << " Power - grow = " << pgrow << std::endl; 1025 os << " threshold (errcon) = " << errcon << std::endl; 1026 1027 os << " fMinimumStep = " << fMinimumStep << std::endl; 1028 os << " Smallest Fraction = " << fSmallestFraction << std::endl; 1029 1030 os << " No Integrat Vars = " << fNoIntegrationVariables << std::endl; 1031 os << " Min No Vars = " << fMinNoVars << std::endl; 1032 os << " Num-Vars = " << fNoVars << std::endl; 1033 1034 os << " verbose level = " << fVerboseLevel << std::endl; 1035 os << " Reintegrates = " << DoesReIntegrate() << std::endl; 1036 } 1037 1038 void PrintInfo( const G4MagInt_Driver & magDrv, std::ostream& os ) 1039 { 1040 os << "State of G4MagInt_Driver: " << std::endl; 1041 os << " Max number of Steps = " << magDrv.GetMaxNoSteps(); 1042 // << " (base # = " << magDrv.fMaxStepBase << " )" << std::endl; 1043 os << " Safety factor = " << magDrv.GetSafety() << std::endl; 1044 os << " Power - shrink = " << magDrv.GetPshrnk() << std::endl; 1045 os << " Power - grow = " << magDrv.GetPgrow() << std::endl; 1046 os << " threshold (errcon) = " << magDrv.GetErrcon() << std::endl; 1047 1048 os << " fMinimumStep = " << magDrv.GetHmin() << std::endl; 1049 os << " Smallest Fraction = " << magDrv.GetSmallestFraction() << std::endl; 1050 1051 /***** 1052 os << " No Integrat Vars = " << magDrv.GetNoIntegrationVariables << std::endl; 1053 os << " Min No Vars = " << magDrv.GetMinNoVars << std::endl; 1054 os << " Num-Vars = " << magDrv.GetNoVars << std::endl; 1055 *****/ 1056 os << " verbose level = " << magDrv.GetVerboseLevel() << std::endl; 1057 os << " Reintegrates = " << magDrv.DoesReIntegrate() << std::endl; 1058 } 1059