Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4ImplicitEuler implementation 27 // 28 // Implicit Euler: 29 // 30 // x_1 = x_0 + h/2 * ( dx(t_0,x_0) + dx(t_0+h,x_0+h*dx(t_0,x_0) ) ) 31 // 32 // Second order solver. 33 // Take the current derivative and add it to the current position. 34 // Take the output and its derivative. Add the mean of both derivatives 35 // to form the final output. 36 // 37 // Author: W. Wander <wwc@mit.edu>, 12.09.1997 38 // -------------------------------------------------------------------- 39 40 #include "G4ImplicitEuler.hh" 41 #include "G4ThreeVector.hh" 42 43 ///////////////////////////////////////////////////////////////////////// 44 // 45 // Constructor 46 47 G4ImplicitEuler::G4ImplicitEuler(G4EquationOfMotion* EqRhs, 48 G4int numberOfVariables) 49 : G4MagErrorStepper(EqRhs, numberOfVariables) 50 { 51 unsigned int noVariables = std::max(numberOfVariables,8); // For Time .. 7+1 52 dydxTemp = new G4double[noVariables] ; 53 yTemp = new G4double[noVariables] ; 54 } 55 56 57 //////////////////////////////////////////////////////////////////////// 58 // 59 // Destructor 60 // 61 G4ImplicitEuler::~G4ImplicitEuler() 62 { 63 delete [] dydxTemp; 64 delete [] yTemp; 65 } 66 67 ////////////////////////////////////////////////////////////////////// 68 // 69 // DumbStepper 70 // 71 void 72 G4ImplicitEuler::DumbStepper( const G4double yIn[], 73 const G4double dydx[], 74 G4double h, 75 G4double yOut[] ) 76 { 77 const G4int numberOfVariables = GetNumberOfVariables(); 78 79 // Initialise time to t0, needed when it is not updated by the integration. 80 // 81 yTemp[7] = yOut[7] = yIn[7]; // Better to set it to NaN; // TODO 82 83 for( G4int i = 0; i < numberOfVariables; ++i ) 84 { 85 yTemp[i] = yIn[i] + h*dydx[i] ; 86 } 87 88 RightHandSide(yTemp,dydxTemp); 89 90 for( G4int i = 0; i < numberOfVariables; ++i ) 91 { 92 yOut[i] = yIn[i] + 0.5 * h * ( dydx[i] + dydxTemp[i] ); 93 } 94 95 return; 96 } 97