Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4HelixImplicitEuler implementation 27 // 28 // Helix Implicit Euler: 29 // x_1 = x_0 + 1/2 * ( helix(h,t_0,x_0) 30 // + helix(h,t_0+h,x_0+helix(h,t0,x0) ) ) 31 // Second order solver. 32 // Take the current derivative and add it to the current position. 33 // Take the output and its derivative. Add the mean of both derivatives 34 // to form the final output 35 // 36 // Author: W.Wander <wwc@mit.edu>, 03/11/1998 37 // ------------------------------------------------------------------------- 38 39 #include "G4HelixImplicitEuler.hh" 40 #include "G4ThreeVector.hh" 41 42 G4HelixImplicitEuler::G4HelixImplicitEuler(G4Mag_EqRhs *EqRhs) 43 : G4MagHelicalStepper(EqRhs) 44 { 45 } 46 47 G4HelixImplicitEuler::~G4HelixImplicitEuler() = default; 48 49 void 50 G4HelixImplicitEuler::DumbStepper( const G4double yIn[], 51 G4ThreeVector Bfld, 52 G4double h, 53 G4double yOut[]) 54 { 55 const G4int nvar = 6 ; 56 G4double yTemp[6], yTemp2[6]; 57 G4ThreeVector Bfld_endpoint; 58 59 // Step forward like in the explicit euler case 60 // 61 AdvanceHelix( yIn, Bfld, h, yTemp); 62 63 // now obtain the new field value at the new point 64 // 65 MagFieldEvaluate(yTemp, Bfld_endpoint); 66 67 // and also advance along a helix for this field value 68 // 69 AdvanceHelix( yIn, Bfld_endpoint, h, yTemp2); 70 71 // we take the average 72 // 73 for( G4int i = 0; i < nvar; ++i ) 74 { 75 yOut[i] = 0.5 * ( yTemp[i] + yTemp2[i] ); 76 } 77 78 // NormaliseTangentVector( yOut ); 79 } 80