Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4HelixImplicitEuler.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // G4HelixImplicitEuler implementation
 27 //
 28 //  Helix Implicit Euler:
 29 //        x_1 = x_0 + 1/2 * ( helix(h,t_0,x_0)
 30 //                          + helix(h,t_0+h,x_0+helix(h,t0,x0) ) )
 31 //  Second order solver.
 32 //  Take the current derivative and add it to the current position.
 33 //  Take the output and its derivative. Add the mean of both derivatives
 34 //  to form the final output
 35 //
 36 // Author: W.Wander <wwc@mit.edu>, 03/11/1998
 37 // -------------------------------------------------------------------------
 38 
 39 #include "G4HelixImplicitEuler.hh"
 40 #include "G4ThreeVector.hh"
 41 
 42 G4HelixImplicitEuler::G4HelixImplicitEuler(G4Mag_EqRhs *EqRhs)
 43   : G4MagHelicalStepper(EqRhs)
 44 {
 45 }
 46 
 47 G4HelixImplicitEuler::~G4HelixImplicitEuler() = default;
 48   
 49 void
 50 G4HelixImplicitEuler::DumbStepper( const G4double yIn[],
 51                                    G4ThreeVector  Bfld,
 52                                    G4double       h,
 53                                    G4double       yOut[])
 54 {
 55   const G4int nvar = 6 ;
 56   G4double yTemp[6], yTemp2[6];
 57   G4ThreeVector Bfld_endpoint;
 58 
 59   // Step forward like in the explicit euler case
 60   //
 61   AdvanceHelix( yIn, Bfld, h, yTemp);
 62 
 63   // now obtain the new field value at the new point
 64   //
 65   MagFieldEvaluate(yTemp, Bfld_endpoint);      
 66 
 67   // and also advance along a helix for this field value
 68   //
 69   AdvanceHelix( yIn, Bfld_endpoint, h, yTemp2);
 70 
 71   // we take the average
 72   //
 73   for( G4int i = 0; i < nvar; ++i )
 74   {
 75     yOut[i] = 0.5 * ( yTemp[i] + yTemp2[i] );
 76   }
 77 
 78   // NormaliseTangentVector( yOut );           
 79 }  
 80