Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4EqEMFieldWithSpin.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // G4EqEMFieldWithSpin implementation
 27 //
 28 // Created: Chris Gong & Peter Gumplinger, 30.08.2007
 29 // -------------------------------------------------------------------
 30 
 31 #include "G4EqEMFieldWithSpin.hh"
 32 #include "G4ElectroMagneticField.hh"
 33 #include "G4ThreeVector.hh"
 34 #include "globals.hh"
 35 #include "G4PhysicalConstants.hh"
 36 #include "G4SystemOfUnits.hh"
 37 
 38 G4EqEMFieldWithSpin::G4EqEMFieldWithSpin(G4ElectroMagneticField *emField )
 39   : G4EquationOfMotion( emField ) 
 40 {
 41 }
 42 
 43 G4EqEMFieldWithSpin::~G4EqEMFieldWithSpin() = default; 
 44 
 45 void  
 46 G4EqEMFieldWithSpin::SetChargeMomentumMass(G4ChargeState particleCharge,
 47                                            G4double MomentumXc,
 48                                            G4double particleMass)
 49 {
 50    charge    = particleCharge.GetCharge();
 51    mass      = particleMass;
 52    magMoment = particleCharge.GetMagneticDipoleMoment();
 53    spin      = particleCharge.GetSpin();
 54 
 55    fElectroMagCof =  eplus*charge*c_light ;
 56    fMassCof = mass*mass;
 57 
 58    omegac = (eplus/mass)*c_light;
 59 
 60    G4double muB = 0.5*eplus*hbar_Planck/(mass/c_squared);
 61 
 62    G4double g_BMT;
 63    if ( spin != 0. )
 64    {
 65      g_BMT = (std::abs(magMoment)/muB)/spin;
 66    }
 67    else
 68    {
 69      g_BMT = 2.;
 70    }
 71 
 72    anomaly = (g_BMT - 2.)/2.;
 73 
 74    G4double E = std::sqrt(sqr(MomentumXc)+sqr(mass));
 75    beta  = MomentumXc/E;
 76    gamma = E/mass;
 77 }
 78 
 79 void
 80 G4EqEMFieldWithSpin::EvaluateRhsGivenB(const G4double y[],
 81                                        const G4double Field[],
 82                                              G4double dydx[] ) const
 83 {
 84 
 85    // Components of y:
 86    //    0-2 dr/ds,
 87    //    3-5 dp/ds - momentum derivatives
 88    //    9-11 dSpin/ds = (1/beta) dSpin/dt - spin derivatives
 89 
 90    // The BMT equation, following J.D.Jackson, Classical
 91    // Electrodynamics, Second Edition,
 92    // dS/dt = (e/mc) S \cross
 93    //              [ (g/2-1 +1/\gamma) B
 94    //               -(g/2-1)\gamma/(\gamma+1) (\beta \cdot B)\beta
 95    //               -(g/2-\gamma/(\gamma+1) \beta \cross E ]
 96    // where
 97    // S = \vec{s}, where S^2 = 1
 98    // B = \vec{B}
 99    // \beta = \vec{\beta} = \beta \vec{u} with u^2 = 1
100    // E = \vec{E}
101 
102    G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ;
103 
104    G4double Energy   = std::sqrt( pSquared + fMassCof );
105    G4double cof2     = Energy/c_light ;
106 
107    G4double pModuleInverse  = 1.0/std::sqrt(pSquared) ;
108 
109    G4double inverse_velocity = Energy * pModuleInverse / c_light;
110 
111    G4double cof1 = fElectroMagCof*pModuleInverse ;
112 
113    dydx[0] = y[3]*pModuleInverse ;                         
114    dydx[1] = y[4]*pModuleInverse ;                         
115    dydx[2] = y[5]*pModuleInverse ;                        
116 
117    dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field[2] - y[5]*Field[1])) ;
118    
119    dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field[0] - y[3]*Field[2])) ; 
120  
121    dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field[1] - y[4]*Field[0])) ;  
122    
123    dydx[6] = dydx[8] = 0.;//not used
124 
125    // Lab Time of flight
126    dydx[7] = inverse_velocity;
127    
128    G4ThreeVector BField(Field[0],Field[1],Field[2]);
129    G4ThreeVector EField(Field[3],Field[4],Field[5]);
130 
131    EField /= c_light;
132 
133    G4ThreeVector u(y[3], y[4], y[5]);
134    u *= pModuleInverse;
135 
136    G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u);
137    G4double ucb = (anomaly+1./gamma)/beta;
138    G4double uce = anomaly + 1./(gamma+1.);
139 
140    G4ThreeVector Spin(y[9],y[10],y[11]);
141 
142    G4double pcharge;
143    if (charge == 0.)
144    {
145      pcharge = 1.;
146    }
147    else
148    {
149      pcharge = charge;
150    }
151 
152    G4ThreeVector dSpin(0.,0.,0.);
153    if (Spin.mag2() != 0.)
154    {
155       dSpin = pcharge*omegac*( ucb*(Spin.cross(BField))-udb*(Spin.cross(u))
156                            // from Jackson
157                            // -uce*Spin.cross(u.cross(EField)) );
158                            // but this form has one less operation
159                      - uce*(u*(Spin*EField) - EField*(Spin*u)) );
160    }
161 
162    dydx[ 9] = dSpin.x();
163    dydx[10] = dSpin.y();
164    dydx[11] = dSpin.z();
165 
166    return;
167 }
168