Geant4 Cross Reference |
1 // ******************************************************************** 2 // * License and Disclaimer * 3 // * * 4 // * The Geant4 software is copyright of the Copyright Holders of * 5 // * the Geant4 Collaboration. It is provided under the terms and * 6 // * conditions of the Geant4 Software License, included in the file * 7 // * LICENSE and available at http://cern.ch/geant4/license . These * 8 // * include a list of copyright holders. * 9 // * * 10 // * Neither the authors of this software system, nor their employing * 11 // * institutes,nor the agencies providing financial support for this * 12 // * work make any representation or warranty, express or implied, * 13 // * regarding this software system or assume any liability for its * 14 // * use. Please see the license in the file LICENSE and URL above * 15 // * for the full disclaimer and the limitation of liability. * 16 // * * 17 // * This code implementation is the result of the scientific and * 18 // * technical work of the GEANT4 collaboration. * 19 // * By using, copying, modifying or distributing the software (or * 20 // * any work based on the software) you agree to acknowledge its * 21 // * use in resulting scientific publications, and indicate your * 22 // * acceptance of all terms of the Geant4 Software license. * 23 // ******************************************************************** 24 // 25 // G4BorisScheme implementation 26 // 27 // Author: Divyansh Tiwari, Google Summer of Code 2022 28 // Supervision: John Apostolakis,Renee Fatemi, Soon Yung Jun 29 // -------------------------------------------------------------------- 30 31 #include "G4BorisScheme.hh" 32 #include "G4FieldUtils.hh" 33 #include"G4SystemOfUnits.hh" 34 #include "globals.hh" 35 #include "G4PhysicalConstants.hh" 36 37 #include "G4EquationOfMotion.hh" 38 //#include "G4EqMagElectricField.hh" 39 40 using namespace field_utils; 41 42 G4BorisScheme::G4BorisScheme( G4EquationOfMotion* equation, 43 G4int nvar ) 44 : fEquation(equation), fnvar(nvar) 45 { 46 if (nvar <= 0) 47 { 48 G4Exception("G4BorisScheme::G4BorisScheme()", 49 "GeomField0002", FatalException, 50 "Invalid number of variables; must be greater than zero!"); 51 } 52 } 53 54 void G4BorisScheme::DoStep(const G4double restMass,const G4double charge, const G4double yIn[], 55 G4double yOut[], G4double hstep) const 56 { 57 G4double yOut1Temp[G4FieldTrack::ncompSVEC]; 58 G4double yOut2Temp[G4FieldTrack::ncompSVEC]; 59 60 // Used the scheme described in the following paper:https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/153167/eth-5175-01.pdf?sequence=1 61 UpdatePosition(restMass, charge, yIn, yOut1Temp, hstep/2); 62 UpdateVelocity(restMass, charge, yOut1Temp, yOut2Temp, hstep); 63 UpdatePosition(restMass, charge, yOut2Temp, yOut, hstep/2); 64 } 65 66 void G4BorisScheme::UpdatePosition(const G4double restMass, const G4double /*charge*/, const G4double yIn[], 67 G4double yOut[], G4double hstep) const 68 { 69 // Particle information 70 copy(yOut, yIn); 71 72 // Obtaining velocity 73 G4ThreeVector momentum_vec =G4ThreeVector(yIn[3],yIn[4],yIn[5]); 74 G4double momentum_mag = momentum_vec.mag(); 75 G4ThreeVector momentum_dir =(1.0/momentum_mag)*momentum_vec; 76 77 G4double velocity_mag = momentum_mag*(c_l)/(std::sqrt(sqr(momentum_mag) +sqr(restMass))); 78 G4ThreeVector velocity = momentum_dir*velocity_mag; 79 80 //Obtaining the time step from the length step 81 82 hstep /= velocity_mag*CLHEP::m; 83 84 // Updating the Position 85 for(G4int i = 0; i <3; i++ ) 86 { 87 G4double pos = yIn[i]/CLHEP::m; 88 pos += hstep*velocity[i]; 89 yOut[i] = pos*CLHEP::m; 90 } 91 } 92 93 void G4BorisScheme::UpdateVelocity(const G4double restMass, const G4double charge, const G4double yIn[], 94 G4double yOut[], G4double hstep) const 95 { 96 //Particle information 97 G4ThreeVector momentum_vec =G4ThreeVector(yIn[3],yIn[4],yIn[5]); 98 G4double momentum_mag = momentum_vec.mag(); 99 G4ThreeVector momentum_dir =(1.0/momentum_mag)*momentum_vec; 100 101 G4double gamma = std::sqrt(sqr(momentum_mag) + sqr(restMass))/restMass; 102 103 G4double mass = (restMass/c_squared)/CLHEP::kg; 104 105 //Obtaining velocity 106 107 G4double velocity_mag = momentum_mag*(c_l)/(std::sqrt(sqr(momentum_mag) +sqr(restMass))); 108 G4ThreeVector velocity = momentum_dir*velocity_mag; 109 110 ////Obtaining the time step from the length step 111 112 hstep /= velocity_mag*CLHEP::m; 113 114 // Obtaining the field values 115 G4double dydx[G4FieldTrack::ncompSVEC]; 116 G4double fieldValue[6] ={0,0,0,0,0,0}; 117 fEquation->EvaluateRhsReturnB(yIn, dydx, fieldValue); 118 119 //Initializing Vectors 120 G4ThreeVector B; 121 G4ThreeVector E; 122 copy(yOut, yIn); 123 for( G4int i = 0; i < 3; i++) 124 { 125 E[i] = fieldValue[i+3]/CLHEP::volt*CLHEP::meter;// FIXME - Check Units 126 B[i] = fieldValue[i]/CLHEP::tesla; 127 } 128 129 //Boris Algorithm 130 G4double qd = hstep*(charge/(2*mass*gamma)); 131 G4ThreeVector h = qd*B; 132 G4ThreeVector u = velocity + qd*E; 133 G4double h_l = h[0]*h[0] + h[1]*h[1] + h[2]*h[2]; 134 G4ThreeVector s_1 = (2*h)/(1 + h_l); 135 G4ThreeVector ud = u + (u + u.cross(h)).cross(s_1); 136 G4ThreeVector v_fi = ud +qd*E; 137 G4double v_mag = std::sqrt(v_fi.mag2()); 138 G4ThreeVector v_dir = v_fi/v_mag; 139 G4double momen_mag = (restMass*v_mag)/(std::sqrt(c_l*c_l - v_mag*v_mag)); 140 G4ThreeVector momen = momen_mag*v_dir; 141 142 // Storing the updated momentum 143 for(int i = 3; i < 6; i++) 144 { 145 yOut[i] = momen[i-3]; 146 } 147 } 148 149 // ---------------------------------------------------------------------------------- 150 151 void G4BorisScheme::copy(G4double dst[], const G4double src[]) const 152 { 153 std::memcpy(dst, src, sizeof(G4double) * fnvar); 154 } 155 156 // ---------------------------------------------------------------------------------- 157 // - Methods using the Boris Scheme Stepping to estimate integration error 158 // ---------------------------------------------------------------------------------- 159 void G4BorisScheme:: 160 StepWithErrorEstimate(const G4double yIn[], G4double restMass, G4double charge, G4double hstep, 161 G4double yOut[], G4double yErr[]) const 162 { 163 // Use two half-steps (comparing to a full step) to obtain output and error estimate 164 G4double yMid[G4FieldTrack::ncompSVEC]; 165 StepWithMidAndErrorEstimate(yIn, restMass, charge, hstep, yMid, yOut, yErr); 166 } 167 168 // ---------------------------------------------------------------------------------- 169 170 void G4BorisScheme:: 171 StepWithMidAndErrorEstimate(const G4double yIn[], G4double restMass, G4double charge, G4double hstep, 172 G4double yMid[], G4double yOut[], G4double yErr[] 173 ) const 174 { 175 G4double halfStep= 0.5*hstep; 176 G4double yOutAlt[G4FieldTrack::ncompSVEC]; 177 178 // In a single step 179 DoStep(restMass, charge, yIn, yOutAlt, hstep ); 180 181 // Same, and also return mid-point evaluation 182 DoStep(restMass, charge, yIn, yMid, halfStep ); 183 DoStep(restMass, charge, yMid, yOut, halfStep ); 184 185 for( G4int i= 0; i<fnvar; i++ ) 186 { 187 yErr[i] = yOutAlt[i] - yOut[i]; 188 } 189 } 190