Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4BorisScheme.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 // ********************************************************************
  2 // * License and Disclaimer                                           *
  3 // *                                                                  *
  4 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  5 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  6 // * conditions of the Geant4 Software License,  included in the file *
  7 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  8 // * include a list of copyright holders.                             *
  9 // *                                                                  *
 10 // * Neither the authors of this software system, nor their employing *
 11 // * institutes,nor the agencies providing financial support for this *
 12 // * work  make  any representation or  warranty, express or implied, *
 13 // * regarding  this  software system or assume any liability for its *
 14 // * use.  Please see the license in the file  LICENSE  and URL above *
 15 // * for the full disclaimer and the limitation of liability.         *
 16 // *                                                                  *
 17 // * This  code  implementation is the result of  the  scientific and *
 18 // * technical work of the GEANT4 collaboration.                      *
 19 // * By using,  copying,  modifying or  distributing the software (or *
 20 // * any work based  on the software)  you  agree  to acknowledge its *
 21 // * use  in  resulting  scientific  publications,  and indicate your *
 22 // * acceptance of all terms of the Geant4 Software license.          *
 23 // ********************************************************************
 24 //
 25 // G4BorisScheme implementation
 26 //
 27 // Author: Divyansh Tiwari, Google Summer of Code 2022
 28 // Supervision: John Apostolakis,Renee Fatemi, Soon Yung Jun
 29 // --------------------------------------------------------------------
 30 
 31 #include "G4BorisScheme.hh"
 32 #include "G4FieldUtils.hh"
 33 #include"G4SystemOfUnits.hh"
 34 #include "globals.hh"
 35 #include "G4PhysicalConstants.hh"
 36 
 37 #include "G4EquationOfMotion.hh"
 38 //#include "G4EqMagElectricField.hh"
 39 
 40 using namespace field_utils;
 41 
 42 G4BorisScheme::G4BorisScheme( G4EquationOfMotion* equation,
 43                                         G4int nvar )
 44   : fEquation(equation), fnvar(nvar)
 45 {
 46   if (nvar <= 0)
 47   {
 48     G4Exception("G4BorisScheme::G4BorisScheme()",
 49                 "GeomField0002", FatalException,
 50                 "Invalid number of variables; must be greater than zero!");
 51   }
 52 }
 53 
 54 void G4BorisScheme::DoStep(const G4double restMass,const G4double charge, const G4double yIn[], 
 55                                  G4double yOut[], G4double hstep) const
 56 {
 57   G4double yOut1Temp[G4FieldTrack::ncompSVEC];
 58   G4double yOut2Temp[G4FieldTrack::ncompSVEC];
 59   
 60   // Used the scheme described in the following paper:https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/153167/eth-5175-01.pdf?sequence=1
 61   UpdatePosition(restMass, charge,  yIn, yOut1Temp, hstep/2);
 62   UpdateVelocity(restMass, charge, yOut1Temp, yOut2Temp, hstep);
 63   UpdatePosition(restMass, charge, yOut2Temp, yOut, hstep/2);
 64 }
 65 
 66 void G4BorisScheme::UpdatePosition(const G4double restMass, const G4double /*charge*/, const G4double yIn[],
 67                                    G4double yOut[], G4double hstep) const
 68 {
 69     // Particle information
 70     copy(yOut, yIn);
 71     
 72     // Obtaining velocity
 73     G4ThreeVector momentum_vec =G4ThreeVector(yIn[3],yIn[4],yIn[5]);
 74     G4double momentum_mag = momentum_vec.mag();
 75     G4ThreeVector momentum_dir =(1.0/momentum_mag)*momentum_vec;
 76 
 77     G4double velocity_mag = momentum_mag*(c_l)/(std::sqrt(sqr(momentum_mag) +sqr(restMass)));
 78     G4ThreeVector velocity = momentum_dir*velocity_mag;
 79 
 80     //Obtaining the time step from the length step
 81 
 82     hstep /= velocity_mag*CLHEP::m;
 83 
 84     // Updating the Position
 85     for(G4int i = 0; i <3; i++ )
 86     {
 87       G4double pos = yIn[i]/CLHEP::m;
 88       pos += hstep*velocity[i];
 89       yOut[i] = pos*CLHEP::m;
 90     }   
 91 }
 92 
 93 void G4BorisScheme::UpdateVelocity(const G4double restMass, const G4double charge, const G4double yIn[], 
 94                                    G4double yOut[], G4double hstep) const
 95 {
 96    //Particle information
 97     G4ThreeVector momentum_vec =G4ThreeVector(yIn[3],yIn[4],yIn[5]);
 98     G4double momentum_mag = momentum_vec.mag();
 99     G4ThreeVector momentum_dir =(1.0/momentum_mag)*momentum_vec;
100 
101     G4double gamma = std::sqrt(sqr(momentum_mag) + sqr(restMass))/restMass;  
102     
103     G4double mass = (restMass/c_squared)/CLHEP::kg;
104     
105     //Obtaining velocity
106    
107     G4double velocity_mag = momentum_mag*(c_l)/(std::sqrt(sqr(momentum_mag) +sqr(restMass)));
108     G4ThreeVector velocity = momentum_dir*velocity_mag;
109 
110     ////Obtaining the time step from the length step
111     
112     hstep /= velocity_mag*CLHEP::m; 
113        
114     // Obtaining the field values
115     G4double dydx[G4FieldTrack::ncompSVEC];
116     G4double fieldValue[6] ={0,0,0,0,0,0};
117     fEquation->EvaluateRhsReturnB(yIn, dydx, fieldValue);
118    
119     //Initializing Vectors
120     G4ThreeVector B;
121     G4ThreeVector E;
122     copy(yOut, yIn);
123     for( G4int i = 0; i < 3; i++)
124     {
125         E[i] = fieldValue[i+3]/CLHEP::volt*CLHEP::meter;// FIXME - Check Units
126         B[i] = fieldValue[i]/CLHEP::tesla;   
127     }
128     
129     //Boris Algorithm
130     G4double qd = hstep*(charge/(2*mass*gamma));
131     G4ThreeVector h = qd*B;
132     G4ThreeVector u = velocity + qd*E;
133     G4double h_l = h[0]*h[0] + h[1]*h[1] + h[2]*h[2];
134     G4ThreeVector s_1 = (2*h)/(1 + h_l);
135     G4ThreeVector ud = u + (u + u.cross(h)).cross(s_1);
136     G4ThreeVector v_fi = ud +qd*E;
137     G4double v_mag = std::sqrt(v_fi.mag2());
138     G4ThreeVector v_dir = v_fi/v_mag;
139     G4double momen_mag = (restMass*v_mag)/(std::sqrt(c_l*c_l - v_mag*v_mag));
140     G4ThreeVector momen = momen_mag*v_dir;
141 
142     // Storing the updated momentum
143     for(int i = 3; i < 6; i++)
144     {
145         yOut[i] = momen[i-3];   
146     }
147 }
148 
149 // ----------------------------------------------------------------------------------
150 
151 void G4BorisScheme::copy(G4double dst[], const G4double src[]) const
152 {
153   std::memcpy(dst, src, sizeof(G4double) * fnvar);
154 }
155 
156 // ----------------------------------------------------------------------------------
157 // - Methods using the Boris Scheme Stepping to estimate integration error
158 // ----------------------------------------------------------------------------------
159 void G4BorisScheme::
160 StepWithErrorEstimate(const G4double yIn[], G4double restMass, G4double charge, G4double hstep,
161                       G4double yOut[], G4double yErr[]) const
162 {
163    // Use two half-steps (comparing to a full step) to obtain output and error estimate
164    G4double yMid[G4FieldTrack::ncompSVEC];
165    StepWithMidAndErrorEstimate(yIn, restMass, charge, hstep, yMid, yOut, yErr);
166 }
167 
168 // ----------------------------------------------------------------------------------
169 
170 void G4BorisScheme::
171 StepWithMidAndErrorEstimate(const G4double yIn[],  G4double restMass, G4double charge, G4double hstep,
172                                   G4double yMid[], G4double yOut[],   G4double yErr[]
173    ) const
174 {
175    G4double halfStep= 0.5*hstep;
176    G4double yOutAlt[G4FieldTrack::ncompSVEC];   
177 
178    // In a single step
179    DoStep(restMass, charge, yIn,  yOutAlt, hstep );
180 
181    // Same, and also return mid-point evaluation
182    DoStep(restMass, charge, yIn,  yMid, halfStep );
183    DoStep(restMass, charge, yMid, yOut, halfStep );
184 
185    for( G4int i= 0; i<fnvar; i++ )
186    {
187       yErr[i] = yOutAlt[i] - yOut[i];
188    }
189 }
190