Geant4 Cross Reference |
1 /* deflate.c -- compress data using the deflation algorithm 2 * Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler 3 * For conditions of distribution and use, see copyright notice in zlib.h 4 */ 5 6 /* 7 * ALGORITHM 8 * 9 * The "deflation" process depends on being able to identify portions 10 * of the input text which are identical to earlier input (within a 11 * sliding window trailing behind the input currently being processed). 12 * 13 * The most straightforward technique turns out to be the fastest for 14 * most input files: try all possible matches and select the longest. 15 * The key feature of this algorithm is that insertions into the string 16 * dictionary are very simple and thus fast, and deletions are avoided 17 * completely. Insertions are performed at each input character, whereas 18 * string matches are performed only when the previous match ends. So it 19 * is preferable to spend more time in matches to allow very fast string 20 * insertions and avoid deletions. The matching algorithm for small 21 * strings is inspired from that of Rabin & Karp. A brute force approach 22 * is used to find longer strings when a small match has been found. 23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze 24 * (by Leonid Broukhis). 25 * A previous version of this file used a more sophisticated algorithm 26 * (by Fiala and Greene) which is guaranteed to run in linear amortized 27 * time, but has a larger average cost, uses more memory and is patented. 28 * However the F&G algorithm may be faster for some highly redundant 29 * files if the parameter max_chain_length (described below) is too large. 30 * 31 * ACKNOWLEDGEMENTS 32 * 33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and 34 * I found it in 'freeze' written by Leonid Broukhis. 35 * Thanks to many people for bug reports and testing. 36 * 37 * REFERENCES 38 * 39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". 40 * Available in http://tools.ietf.org/html/rfc1951 41 * 42 * A description of the Rabin and Karp algorithm is given in the book 43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. 44 * 45 * Fiala,E.R., and Greene,D.H. 46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 47 * 48 */ 49 50 /* @(#) $Id$ */ 51 52 #include "deflate.h" 53 54 const char deflate_copyright[] = 55 " deflate 1.2.13 Copyright 1995-2022 Jean-loup Gailly and Mark Adler "; 56 /* 57 If you use the zlib library in a product, an acknowledgment is welcome 58 in the documentation of your product. If for some reason you cannot 59 include such an acknowledgment, I would appreciate that you keep this 60 copyright string in the executable of your product. 61 */ 62 63 /* =========================================================================== 64 * Function prototypes. 65 */ 66 typedef enum { 67 need_more, /* block not completed, need more input or more output */ 68 block_done, /* block flush performed */ 69 finish_started, /* finish started, need only more output at next deflate */ 70 finish_done /* finish done, accept no more input or output */ 71 } block_state; 72 73 typedef block_state (*compress_func) OF((deflate_state *s, int flush)); 74 /* Compression function. Returns the block state after the call. */ 75 76 local int deflateStateCheck OF((z_streamp strm)); 77 local void slide_hash OF((deflate_state *s)); 78 local void fill_window OF((deflate_state *s)); 79 local block_state deflate_stored OF((deflate_state *s, int flush)); 80 local block_state deflate_fast OF((deflate_state *s, int flush)); 81 #ifndef FASTEST 82 local block_state deflate_slow OF((deflate_state *s, int flush)); 83 #endif 84 local block_state deflate_rle OF((deflate_state *s, int flush)); 85 local block_state deflate_huff OF((deflate_state *s, int flush)); 86 local void lm_init OF((deflate_state *s)); 87 local void putShortMSB OF((deflate_state *s, uInt b)); 88 local void flush_pending OF((z_streamp strm)); 89 local unsigned read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); 90 local uInt longest_match OF((deflate_state *s, IPos cur_match)); 91 92 #ifdef ZLIB_DEBUG 93 local void check_match OF((deflate_state *s, IPos start, IPos match, 94 int length)); 95 #endif 96 97 /* =========================================================================== 98 * Local data 99 */ 100 101 #define NIL 0 102 /* Tail of hash chains */ 103 104 #ifndef TOO_FAR 105 # define TOO_FAR 4096 106 #endif 107 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ 108 109 /* Values for max_lazy_match, good_match and max_chain_length, depending on 110 * the desired pack level (0..9). The values given below have been tuned to 111 * exclude worst case performance for pathological files. Better values may be 112 * found for specific files. 113 */ 114 typedef struct config_s { 115 ush good_length; /* reduce lazy search above this match length */ 116 ush max_lazy; /* do not perform lazy search above this match length */ 117 ush nice_length; /* quit search above this match length */ 118 ush max_chain; 119 compress_func func; 120 } config; 121 122 #ifdef FASTEST 123 local const config configuration_table[2] = { 124 /* good lazy nice chain */ 125 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ 126 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ 127 #else 128 local const config configuration_table[10] = { 129 /* good lazy nice chain */ 130 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ 131 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ 132 /* 2 */ {4, 5, 16, 8, deflate_fast}, 133 /* 3 */ {4, 6, 32, 32, deflate_fast}, 134 135 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ 136 /* 5 */ {8, 16, 32, 32, deflate_slow}, 137 /* 6 */ {8, 16, 128, 128, deflate_slow}, 138 /* 7 */ {8, 32, 128, 256, deflate_slow}, 139 /* 8 */ {32, 128, 258, 1024, deflate_slow}, 140 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ 141 #endif 142 143 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 144 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different 145 * meaning. 146 */ 147 148 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ 149 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0)) 150 151 /* =========================================================================== 152 * Update a hash value with the given input byte 153 * IN assertion: all calls to UPDATE_HASH are made with consecutive input 154 * characters, so that a running hash key can be computed from the previous 155 * key instead of complete recalculation each time. 156 */ 157 #define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask) 158 159 160 /* =========================================================================== 161 * Insert string str in the dictionary and set match_head to the previous head 162 * of the hash chain (the most recent string with same hash key). Return 163 * the previous length of the hash chain. 164 * If this file is compiled with -DFASTEST, the compression level is forced 165 * to 1, and no hash chains are maintained. 166 * IN assertion: all calls to INSERT_STRING are made with consecutive input 167 * characters and the first MIN_MATCH bytes of str are valid (except for 168 * the last MIN_MATCH-1 bytes of the input file). 169 */ 170 #ifdef FASTEST 171 #define INSERT_STRING(s, str, match_head) \ 172 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ 173 match_head = s->head[s->ins_h], \ 174 s->head[s->ins_h] = (Pos)(str)) 175 #else 176 #define INSERT_STRING(s, str, match_head) \ 177 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ 178 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ 179 s->head[s->ins_h] = (Pos)(str)) 180 #endif 181 182 /* =========================================================================== 183 * Initialize the hash table (avoiding 64K overflow for 16 bit systems). 184 * prev[] will be initialized on the fly. 185 */ 186 #define CLEAR_HASH(s) \ 187 do { \ 188 s->head[s->hash_size - 1] = NIL; \ 189 zmemzero((Bytef *)s->head, \ 190 (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \ 191 } while (0) 192 193 /* =========================================================================== 194 * Slide the hash table when sliding the window down (could be avoided with 32 195 * bit values at the expense of memory usage). We slide even when level == 0 to 196 * keep the hash table consistent if we switch back to level > 0 later. 197 */ 198 local void slide_hash(s) 199 deflate_state *s; 200 { 201 unsigned n, m; 202 Posf *p; 203 uInt wsize = s->w_size; 204 205 n = s->hash_size; 206 p = &s->head[n]; 207 do { 208 m = *--p; 209 *p = (Pos)(m >= wsize ? m - wsize : NIL); 210 } while (--n); 211 n = wsize; 212 #ifndef FASTEST 213 p = &s->prev[n]; 214 do { 215 m = *--p; 216 *p = (Pos)(m >= wsize ? m - wsize : NIL); 217 /* If n is not on any hash chain, prev[n] is garbage but 218 * its value will never be used. 219 */ 220 } while (--n); 221 #endif 222 } 223 224 /* ========================================================================= */ 225 int ZEXPORT deflateInit_(strm, level, version, stream_size) 226 z_streamp strm; 227 int level; 228 const char *version; 229 int stream_size; 230 { 231 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, 232 Z_DEFAULT_STRATEGY, version, stream_size); 233 /* To do: ignore strm->next_in if we use it as window */ 234 } 235 236 /* ========================================================================= */ 237 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, 238 version, stream_size) 239 z_streamp strm; 240 int level; 241 int method; 242 int windowBits; 243 int memLevel; 244 int strategy; 245 const char *version; 246 int stream_size; 247 { 248 deflate_state *s; 249 int wrap = 1; 250 static const char my_version[] = ZLIB_VERSION; 251 252 if (version == Z_NULL || version[0] != my_version[0] || 253 stream_size != sizeof(z_stream)) { 254 return Z_VERSION_ERROR; 255 } 256 if (strm == Z_NULL) return Z_STREAM_ERROR; 257 258 strm->msg = Z_NULL; 259 if (strm->zalloc == (alloc_func)0) { 260 #ifdef Z_SOLO 261 return Z_STREAM_ERROR; 262 #else 263 strm->zalloc = zcalloc; 264 strm->opaque = (voidpf)0; 265 #endif 266 } 267 if (strm->zfree == (free_func)0) 268 #ifdef Z_SOLO 269 return Z_STREAM_ERROR; 270 #else 271 strm->zfree = zcfree; 272 #endif 273 274 #ifdef FASTEST 275 if (level != 0) level = 1; 276 #else 277 if (level == Z_DEFAULT_COMPRESSION) level = 6; 278 #endif 279 280 if (windowBits < 0) { /* suppress zlib wrapper */ 281 wrap = 0; 282 if (windowBits < -15) 283 return Z_STREAM_ERROR; 284 windowBits = -windowBits; 285 } 286 #ifdef GZIP 287 else if (windowBits > 15) { 288 wrap = 2; /* write gzip wrapper instead */ 289 windowBits -= 16; 290 } 291 #endif 292 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || 293 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || 294 strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) { 295 return Z_STREAM_ERROR; 296 } 297 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ 298 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); 299 if (s == Z_NULL) return Z_MEM_ERROR; 300 strm->state = (struct internal_state FAR *)s; 301 s->strm = strm; 302 s->status = INIT_STATE; /* to pass state test in deflateReset() */ 303 304 s->wrap = wrap; 305 s->gzhead = Z_NULL; 306 s->w_bits = (uInt)windowBits; 307 s->w_size = 1 << s->w_bits; 308 s->w_mask = s->w_size - 1; 309 310 s->hash_bits = (uInt)memLevel + 7; 311 s->hash_size = 1 << s->hash_bits; 312 s->hash_mask = s->hash_size - 1; 313 s->hash_shift = ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH); 314 315 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); 316 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); 317 /* Avoid use of uninitialized value, see: 318 * https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=11360 319 */ 320 zmemzero(s->prev, s->w_size * sizeof(Pos)); 321 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); 322 323 s->high_water = 0; /* nothing written to s->window yet */ 324 325 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ 326 327 /* We overlay pending_buf and sym_buf. This works since the average size 328 * for length/distance pairs over any compressed block is assured to be 31 329 * bits or less. 330 * 331 * Analysis: The longest fixed codes are a length code of 8 bits plus 5 332 * extra bits, for lengths 131 to 257. The longest fixed distance codes are 333 * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest 334 * possible fixed-codes length/distance pair is then 31 bits total. 335 * 336 * sym_buf starts one-fourth of the way into pending_buf. So there are 337 * three bytes in sym_buf for every four bytes in pending_buf. Each symbol 338 * in sym_buf is three bytes -- two for the distance and one for the 339 * literal/length. As each symbol is consumed, the pointer to the next 340 * sym_buf value to read moves forward three bytes. From that symbol, up to 341 * 31 bits are written to pending_buf. The closest the written pending_buf 342 * bits gets to the next sym_buf symbol to read is just before the last 343 * code is written. At that time, 31*(n - 2) bits have been written, just 344 * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at 345 * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1 346 * symbols are written.) The closest the writing gets to what is unread is 347 * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and 348 * can range from 128 to 32768. 349 * 350 * Therefore, at a minimum, there are 142 bits of space between what is 351 * written and what is read in the overlain buffers, so the symbols cannot 352 * be overwritten by the compressed data. That space is actually 139 bits, 353 * due to the three-bit fixed-code block header. 354 * 355 * That covers the case where either Z_FIXED is specified, forcing fixed 356 * codes, or when the use of fixed codes is chosen, because that choice 357 * results in a smaller compressed block than dynamic codes. That latter 358 * condition then assures that the above analysis also covers all dynamic 359 * blocks. A dynamic-code block will only be chosen to be emitted if it has 360 * fewer bits than a fixed-code block would for the same set of symbols. 361 * Therefore its average symbol length is assured to be less than 31. So 362 * the compressed data for a dynamic block also cannot overwrite the 363 * symbols from which it is being constructed. 364 */ 365 366 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4); 367 s->pending_buf_size = (ulg)s->lit_bufsize * 4; 368 369 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || 370 s->pending_buf == Z_NULL) { 371 s->status = FINISH_STATE; 372 strm->msg = ERR_MSG(Z_MEM_ERROR); 373 deflateEnd (strm); 374 return Z_MEM_ERROR; 375 } 376 s->sym_buf = s->pending_buf + s->lit_bufsize; 377 s->sym_end = (s->lit_bufsize - 1) * 3; 378 /* We avoid equality with lit_bufsize*3 because of wraparound at 64K 379 * on 16 bit machines and because stored blocks are restricted to 380 * 64K-1 bytes. 381 */ 382 383 s->level = level; 384 s->strategy = strategy; 385 s->method = (Byte)method; 386 387 return deflateReset(strm); 388 } 389 390 /* ========================================================================= 391 * Check for a valid deflate stream state. Return 0 if ok, 1 if not. 392 */ 393 local int deflateStateCheck(strm) 394 z_streamp strm; 395 { 396 deflate_state *s; 397 if (strm == Z_NULL || 398 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) 399 return 1; 400 s = strm->state; 401 if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE && 402 #ifdef GZIP 403 s->status != GZIP_STATE && 404 #endif 405 s->status != EXTRA_STATE && 406 s->status != NAME_STATE && 407 s->status != COMMENT_STATE && 408 s->status != HCRC_STATE && 409 s->status != BUSY_STATE && 410 s->status != FINISH_STATE)) 411 return 1; 412 return 0; 413 } 414 415 /* ========================================================================= */ 416 int ZEXPORT deflateSetDictionary(strm, dictionary, dictLength) 417 z_streamp strm; 418 const Bytef *dictionary; 419 uInt dictLength; 420 { 421 deflate_state *s; 422 uInt str, n; 423 int wrap; 424 unsigned avail; 425 z_const unsigned char *next; 426 427 if (deflateStateCheck(strm) || dictionary == Z_NULL) 428 return Z_STREAM_ERROR; 429 s = strm->state; 430 wrap = s->wrap; 431 if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) 432 return Z_STREAM_ERROR; 433 434 /* when using zlib wrappers, compute Adler-32 for provided dictionary */ 435 if (wrap == 1) 436 strm->adler = adler32(strm->adler, dictionary, dictLength); 437 s->wrap = 0; /* avoid computing Adler-32 in read_buf */ 438 439 /* if dictionary would fill window, just replace the history */ 440 if (dictLength >= s->w_size) { 441 if (wrap == 0) { /* already empty otherwise */ 442 CLEAR_HASH(s); 443 s->strstart = 0; 444 s->block_start = 0L; 445 s->insert = 0; 446 } 447 dictionary += dictLength - s->w_size; /* use the tail */ 448 dictLength = s->w_size; 449 } 450 451 /* insert dictionary into window and hash */ 452 avail = strm->avail_in; 453 next = strm->next_in; 454 strm->avail_in = dictLength; 455 strm->next_in = (z_const Bytef *)dictionary; 456 fill_window(s); 457 while (s->lookahead >= MIN_MATCH) { 458 str = s->strstart; 459 n = s->lookahead - (MIN_MATCH-1); 460 do { 461 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); 462 #ifndef FASTEST 463 s->prev[str & s->w_mask] = s->head[s->ins_h]; 464 #endif 465 s->head[s->ins_h] = (Pos)str; 466 str++; 467 } while (--n); 468 s->strstart = str; 469 s->lookahead = MIN_MATCH-1; 470 fill_window(s); 471 } 472 s->strstart += s->lookahead; 473 s->block_start = (long)s->strstart; 474 s->insert = s->lookahead; 475 s->lookahead = 0; 476 s->match_length = s->prev_length = MIN_MATCH-1; 477 s->match_available = 0; 478 strm->next_in = next; 479 strm->avail_in = avail; 480 s->wrap = wrap; 481 return Z_OK; 482 } 483 484 /* ========================================================================= */ 485 int ZEXPORT deflateGetDictionary(strm, dictionary, dictLength) 486 z_streamp strm; 487 Bytef *dictionary; 488 uInt *dictLength; 489 { 490 deflate_state *s; 491 uInt len; 492 493 if (deflateStateCheck(strm)) 494 return Z_STREAM_ERROR; 495 s = strm->state; 496 len = s->strstart + s->lookahead; 497 if (len > s->w_size) 498 len = s->w_size; 499 if (dictionary != Z_NULL && len) 500 zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len); 501 if (dictLength != Z_NULL) 502 *dictLength = len; 503 return Z_OK; 504 } 505 506 /* ========================================================================= */ 507 int ZEXPORT deflateResetKeep(strm) 508 z_streamp strm; 509 { 510 deflate_state *s; 511 512 if (deflateStateCheck(strm)) { 513 return Z_STREAM_ERROR; 514 } 515 516 strm->total_in = strm->total_out = 0; 517 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ 518 strm->data_type = Z_UNKNOWN; 519 520 s = (deflate_state *)strm->state; 521 s->pending = 0; 522 s->pending_out = s->pending_buf; 523 524 if (s->wrap < 0) { 525 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ 526 } 527 s->status = 528 #ifdef GZIP 529 s->wrap == 2 ? GZIP_STATE : 530 #endif 531 INIT_STATE; 532 strm->adler = 533 #ifdef GZIP 534 s->wrap == 2 ? crc32(0L, Z_NULL, 0) : 535 #endif 536 adler32(0L, Z_NULL, 0); 537 s->last_flush = -2; 538 539 _tr_init(s); 540 541 return Z_OK; 542 } 543 544 /* ========================================================================= */ 545 int ZEXPORT deflateReset(strm) 546 z_streamp strm; 547 { 548 int ret; 549 550 ret = deflateResetKeep(strm); 551 if (ret == Z_OK) 552 lm_init(strm->state); 553 return ret; 554 } 555 556 /* ========================================================================= */ 557 int ZEXPORT deflateSetHeader(strm, head) 558 z_streamp strm; 559 gz_headerp head; 560 { 561 if (deflateStateCheck(strm) || strm->state->wrap != 2) 562 return Z_STREAM_ERROR; 563 strm->state->gzhead = head; 564 return Z_OK; 565 } 566 567 /* ========================================================================= */ 568 int ZEXPORT deflatePending(strm, pending, bits) 569 unsigned *pending; 570 int *bits; 571 z_streamp strm; 572 { 573 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 574 if (pending != Z_NULL) 575 *pending = strm->state->pending; 576 if (bits != Z_NULL) 577 *bits = strm->state->bi_valid; 578 return Z_OK; 579 } 580 581 /* ========================================================================= */ 582 int ZEXPORT deflatePrime(strm, bits, value) 583 z_streamp strm; 584 int bits; 585 int value; 586 { 587 deflate_state *s; 588 int put; 589 590 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 591 s = strm->state; 592 if (bits < 0 || bits > 16 || 593 s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3)) 594 return Z_BUF_ERROR; 595 do { 596 put = Buf_size - s->bi_valid; 597 if (put > bits) 598 put = bits; 599 s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); 600 s->bi_valid += put; 601 _tr_flush_bits(s); 602 value >>= put; 603 bits -= put; 604 } while (bits); 605 return Z_OK; 606 } 607 608 /* ========================================================================= */ 609 int ZEXPORT deflateParams(strm, level, strategy) 610 z_streamp strm; 611 int level; 612 int strategy; 613 { 614 deflate_state *s; 615 compress_func func; 616 617 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 618 s = strm->state; 619 620 #ifdef FASTEST 621 if (level != 0) level = 1; 622 #else 623 if (level == Z_DEFAULT_COMPRESSION) level = 6; 624 #endif 625 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { 626 return Z_STREAM_ERROR; 627 } 628 func = configuration_table[s->level].func; 629 630 if ((strategy != s->strategy || func != configuration_table[level].func) && 631 s->last_flush != -2) { 632 /* Flush the last buffer: */ 633 int err = deflate(strm, Z_BLOCK); 634 if (err == Z_STREAM_ERROR) 635 return err; 636 if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead) 637 return Z_BUF_ERROR; 638 } 639 if (s->level != level) { 640 if (s->level == 0 && s->matches != 0) { 641 if (s->matches == 1) 642 slide_hash(s); 643 else 644 CLEAR_HASH(s); 645 s->matches = 0; 646 } 647 s->level = level; 648 s->max_lazy_match = configuration_table[level].max_lazy; 649 s->good_match = configuration_table[level].good_length; 650 s->nice_match = configuration_table[level].nice_length; 651 s->max_chain_length = configuration_table[level].max_chain; 652 } 653 s->strategy = strategy; 654 return Z_OK; 655 } 656 657 /* ========================================================================= */ 658 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain) 659 z_streamp strm; 660 int good_length; 661 int max_lazy; 662 int nice_length; 663 int max_chain; 664 { 665 deflate_state *s; 666 667 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 668 s = strm->state; 669 s->good_match = (uInt)good_length; 670 s->max_lazy_match = (uInt)max_lazy; 671 s->nice_match = nice_length; 672 s->max_chain_length = (uInt)max_chain; 673 return Z_OK; 674 } 675 676 /* ========================================================================= 677 * For the default windowBits of 15 and memLevel of 8, this function returns a 678 * close to exact, as well as small, upper bound on the compressed size. This 679 * is an expansion of ~0.03%, plus a small constant. 680 * 681 * For any setting other than those defaults for windowBits and memLevel, one 682 * of two worst case bounds is returned. This is at most an expansion of ~4% or 683 * ~13%, plus a small constant. 684 * 685 * Both the 0.03% and 4% derive from the overhead of stored blocks. The first 686 * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second 687 * is for stored blocks of 127 bytes (the worst case memLevel == 1). The 688 * expansion results from five bytes of header for each stored block. 689 * 690 * The larger expansion of 13% results from a window size less than or equal to 691 * the symbols buffer size (windowBits <= memLevel + 7). In that case some of 692 * the data being compressed may have slid out of the sliding window, impeding 693 * a stored block from being emitted. Then the only choice is a fixed or 694 * dynamic block, where a fixed block limits the maximum expansion to 9 bits 695 * per 8-bit byte, plus 10 bits for every block. The smallest block size for 696 * which this can occur is 255 (memLevel == 2). 697 * 698 * Shifts are used to approximate divisions, for speed. 699 */ 700 uLong ZEXPORT deflateBound(strm, sourceLen) 701 z_streamp strm; 702 uLong sourceLen; 703 { 704 deflate_state *s; 705 uLong fixedlen, storelen, wraplen; 706 707 /* upper bound for fixed blocks with 9-bit literals and length 255 708 (memLevel == 2, which is the lowest that may not use stored blocks) -- 709 ~13% overhead plus a small constant */ 710 fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) + 711 (sourceLen >> 9) + 4; 712 713 /* upper bound for stored blocks with length 127 (memLevel == 1) -- 714 ~4% overhead plus a small constant */ 715 storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) + 716 (sourceLen >> 11) + 7; 717 718 /* if can't get parameters, return larger bound plus a zlib wrapper */ 719 if (deflateStateCheck(strm)) 720 return (fixedlen > storelen ? fixedlen : storelen) + 6; 721 722 /* compute wrapper length */ 723 s = strm->state; 724 switch (s->wrap) { 725 case 0: /* raw deflate */ 726 wraplen = 0; 727 break; 728 case 1: /* zlib wrapper */ 729 wraplen = 6 + (s->strstart ? 4 : 0); 730 break; 731 #ifdef GZIP 732 case 2: /* gzip wrapper */ 733 wraplen = 18; 734 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ 735 Bytef *str; 736 if (s->gzhead->extra != Z_NULL) 737 wraplen += 2 + s->gzhead->extra_len; 738 str = s->gzhead->name; 739 if (str != Z_NULL) 740 do { 741 wraplen++; 742 } while (*str++); 743 str = s->gzhead->comment; 744 if (str != Z_NULL) 745 do { 746 wraplen++; 747 } while (*str++); 748 if (s->gzhead->hcrc) 749 wraplen += 2; 750 } 751 break; 752 #endif 753 default: /* for compiler happiness */ 754 wraplen = 6; 755 } 756 757 /* if not default parameters, return one of the conservative bounds */ 758 if (s->w_bits != 15 || s->hash_bits != 8 + 7) 759 return (s->w_bits <= s->hash_bits ? fixedlen : storelen) + wraplen; 760 761 /* default settings: return tight bound for that case -- ~0.03% overhead 762 plus a small constant */ 763 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + 764 (sourceLen >> 25) + 13 - 6 + wraplen; 765 } 766 767 /* ========================================================================= 768 * Put a short in the pending buffer. The 16-bit value is put in MSB order. 769 * IN assertion: the stream state is correct and there is enough room in 770 * pending_buf. 771 */ 772 local void putShortMSB(s, b) 773 deflate_state *s; 774 uInt b; 775 { 776 put_byte(s, (Byte)(b >> 8)); 777 put_byte(s, (Byte)(b & 0xff)); 778 } 779 780 /* ========================================================================= 781 * Flush as much pending output as possible. All deflate() output, except for 782 * some deflate_stored() output, goes through this function so some 783 * applications may wish to modify it to avoid allocating a large 784 * strm->next_out buffer and copying into it. (See also read_buf()). 785 */ 786 local void flush_pending(strm) 787 z_streamp strm; 788 { 789 unsigned len; 790 deflate_state *s = strm->state; 791 792 _tr_flush_bits(s); 793 len = s->pending; 794 if (len > strm->avail_out) len = strm->avail_out; 795 if (len == 0) return; 796 797 zmemcpy(strm->next_out, s->pending_out, len); 798 strm->next_out += len; 799 s->pending_out += len; 800 strm->total_out += len; 801 strm->avail_out -= len; 802 s->pending -= len; 803 if (s->pending == 0) { 804 s->pending_out = s->pending_buf; 805 } 806 } 807 808 /* =========================================================================== 809 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1]. 810 */ 811 #define HCRC_UPDATE(beg) \ 812 do { \ 813 if (s->gzhead->hcrc && s->pending > (beg)) \ 814 strm->adler = crc32(strm->adler, s->pending_buf + (beg), \ 815 s->pending - (beg)); \ 816 } while (0) 817 818 /* ========================================================================= */ 819 int ZEXPORT deflate(strm, flush) 820 z_streamp strm; 821 int flush; 822 { 823 int old_flush; /* value of flush param for previous deflate call */ 824 deflate_state *s; 825 826 if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) { 827 return Z_STREAM_ERROR; 828 } 829 s = strm->state; 830 831 if (strm->next_out == Z_NULL || 832 (strm->avail_in != 0 && strm->next_in == Z_NULL) || 833 (s->status == FINISH_STATE && flush != Z_FINISH)) { 834 ERR_RETURN(strm, Z_STREAM_ERROR); 835 } 836 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); 837 838 old_flush = s->last_flush; 839 s->last_flush = flush; 840 841 /* Flush as much pending output as possible */ 842 if (s->pending != 0) { 843 flush_pending(strm); 844 if (strm->avail_out == 0) { 845 /* Since avail_out is 0, deflate will be called again with 846 * more output space, but possibly with both pending and 847 * avail_in equal to zero. There won't be anything to do, 848 * but this is not an error situation so make sure we 849 * return OK instead of BUF_ERROR at next call of deflate: 850 */ 851 s->last_flush = -1; 852 return Z_OK; 853 } 854 855 /* Make sure there is something to do and avoid duplicate consecutive 856 * flushes. For repeated and useless calls with Z_FINISH, we keep 857 * returning Z_STREAM_END instead of Z_BUF_ERROR. 858 */ 859 } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && 860 flush != Z_FINISH) { 861 ERR_RETURN(strm, Z_BUF_ERROR); 862 } 863 864 /* User must not provide more input after the first FINISH: */ 865 if (s->status == FINISH_STATE && strm->avail_in != 0) { 866 ERR_RETURN(strm, Z_BUF_ERROR); 867 } 868 869 /* Write the header */ 870 if (s->status == INIT_STATE && s->wrap == 0) 871 s->status = BUSY_STATE; 872 if (s->status == INIT_STATE) { 873 /* zlib header */ 874 uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8; 875 uInt level_flags; 876 877 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) 878 level_flags = 0; 879 else if (s->level < 6) 880 level_flags = 1; 881 else if (s->level == 6) 882 level_flags = 2; 883 else 884 level_flags = 3; 885 header |= (level_flags << 6); 886 if (s->strstart != 0) header |= PRESET_DICT; 887 header += 31 - (header % 31); 888 889 putShortMSB(s, header); 890 891 /* Save the adler32 of the preset dictionary: */ 892 if (s->strstart != 0) { 893 putShortMSB(s, (uInt)(strm->adler >> 16)); 894 putShortMSB(s, (uInt)(strm->adler & 0xffff)); 895 } 896 strm->adler = adler32(0L, Z_NULL, 0); 897 s->status = BUSY_STATE; 898 899 /* Compression must start with an empty pending buffer */ 900 flush_pending(strm); 901 if (s->pending != 0) { 902 s->last_flush = -1; 903 return Z_OK; 904 } 905 } 906 #ifdef GZIP 907 if (s->status == GZIP_STATE) { 908 /* gzip header */ 909 strm->adler = crc32(0L, Z_NULL, 0); 910 put_byte(s, 31); 911 put_byte(s, 139); 912 put_byte(s, 8); 913 if (s->gzhead == Z_NULL) { 914 put_byte(s, 0); 915 put_byte(s, 0); 916 put_byte(s, 0); 917 put_byte(s, 0); 918 put_byte(s, 0); 919 put_byte(s, s->level == 9 ? 2 : 920 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 921 4 : 0)); 922 put_byte(s, OS_CODE); 923 s->status = BUSY_STATE; 924 925 /* Compression must start with an empty pending buffer */ 926 flush_pending(strm); 927 if (s->pending != 0) { 928 s->last_flush = -1; 929 return Z_OK; 930 } 931 } 932 else { 933 put_byte(s, (s->gzhead->text ? 1 : 0) + 934 (s->gzhead->hcrc ? 2 : 0) + 935 (s->gzhead->extra == Z_NULL ? 0 : 4) + 936 (s->gzhead->name == Z_NULL ? 0 : 8) + 937 (s->gzhead->comment == Z_NULL ? 0 : 16) 938 ); 939 put_byte(s, (Byte)(s->gzhead->time & 0xff)); 940 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); 941 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); 942 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); 943 put_byte(s, s->level == 9 ? 2 : 944 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 945 4 : 0)); 946 put_byte(s, s->gzhead->os & 0xff); 947 if (s->gzhead->extra != Z_NULL) { 948 put_byte(s, s->gzhead->extra_len & 0xff); 949 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); 950 } 951 if (s->gzhead->hcrc) 952 strm->adler = crc32(strm->adler, s->pending_buf, 953 s->pending); 954 s->gzindex = 0; 955 s->status = EXTRA_STATE; 956 } 957 } 958 if (s->status == EXTRA_STATE) { 959 if (s->gzhead->extra != Z_NULL) { 960 ulg beg = s->pending; /* start of bytes to update crc */ 961 uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex; 962 while (s->pending + left > s->pending_buf_size) { 963 uInt copy = s->pending_buf_size - s->pending; 964 zmemcpy(s->pending_buf + s->pending, 965 s->gzhead->extra + s->gzindex, copy); 966 s->pending = s->pending_buf_size; 967 HCRC_UPDATE(beg); 968 s->gzindex += copy; 969 flush_pending(strm); 970 if (s->pending != 0) { 971 s->last_flush = -1; 972 return Z_OK; 973 } 974 beg = 0; 975 left -= copy; 976 } 977 zmemcpy(s->pending_buf + s->pending, 978 s->gzhead->extra + s->gzindex, left); 979 s->pending += left; 980 HCRC_UPDATE(beg); 981 s->gzindex = 0; 982 } 983 s->status = NAME_STATE; 984 } 985 if (s->status == NAME_STATE) { 986 if (s->gzhead->name != Z_NULL) { 987 ulg beg = s->pending; /* start of bytes to update crc */ 988 int val; 989 do { 990 if (s->pending == s->pending_buf_size) { 991 HCRC_UPDATE(beg); 992 flush_pending(strm); 993 if (s->pending != 0) { 994 s->last_flush = -1; 995 return Z_OK; 996 } 997 beg = 0; 998 } 999 val = s->gzhead->name[s->gzindex++]; 1000 put_byte(s, val); 1001 } while (val != 0); 1002 HCRC_UPDATE(beg); 1003 s->gzindex = 0; 1004 } 1005 s->status = COMMENT_STATE; 1006 } 1007 if (s->status == COMMENT_STATE) { 1008 if (s->gzhead->comment != Z_NULL) { 1009 ulg beg = s->pending; /* start of bytes to update crc */ 1010 int val; 1011 do { 1012 if (s->pending == s->pending_buf_size) { 1013 HCRC_UPDATE(beg); 1014 flush_pending(strm); 1015 if (s->pending != 0) { 1016 s->last_flush = -1; 1017 return Z_OK; 1018 } 1019 beg = 0; 1020 } 1021 val = s->gzhead->comment[s->gzindex++]; 1022 put_byte(s, val); 1023 } while (val != 0); 1024 HCRC_UPDATE(beg); 1025 } 1026 s->status = HCRC_STATE; 1027 } 1028 if (s->status == HCRC_STATE) { 1029 if (s->gzhead->hcrc) { 1030 if (s->pending + 2 > s->pending_buf_size) { 1031 flush_pending(strm); 1032 if (s->pending != 0) { 1033 s->last_flush = -1; 1034 return Z_OK; 1035 } 1036 } 1037 put_byte(s, (Byte)(strm->adler & 0xff)); 1038 put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); 1039 strm->adler = crc32(0L, Z_NULL, 0); 1040 } 1041 s->status = BUSY_STATE; 1042 1043 /* Compression must start with an empty pending buffer */ 1044 flush_pending(strm); 1045 if (s->pending != 0) { 1046 s->last_flush = -1; 1047 return Z_OK; 1048 } 1049 } 1050 #endif 1051 1052 /* Start a new block or continue the current one. 1053 */ 1054 if (strm->avail_in != 0 || s->lookahead != 0 || 1055 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { 1056 block_state bstate; 1057 1058 bstate = s->level == 0 ? deflate_stored(s, flush) : 1059 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : 1060 s->strategy == Z_RLE ? deflate_rle(s, flush) : 1061 (*(configuration_table[s->level].func))(s, flush); 1062 1063 if (bstate == finish_started || bstate == finish_done) { 1064 s->status = FINISH_STATE; 1065 } 1066 if (bstate == need_more || bstate == finish_started) { 1067 if (strm->avail_out == 0) { 1068 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ 1069 } 1070 return Z_OK; 1071 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call 1072 * of deflate should use the same flush parameter to make sure 1073 * that the flush is complete. So we don't have to output an 1074 * empty block here, this will be done at next call. This also 1075 * ensures that for a very small output buffer, we emit at most 1076 * one empty block. 1077 */ 1078 } 1079 if (bstate == block_done) { 1080 if (flush == Z_PARTIAL_FLUSH) { 1081 _tr_align(s); 1082 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ 1083 _tr_stored_block(s, (char*)0, 0L, 0); 1084 /* For a full flush, this empty block will be recognized 1085 * as a special marker by inflate_sync(). 1086 */ 1087 if (flush == Z_FULL_FLUSH) { 1088 CLEAR_HASH(s); /* forget history */ 1089 if (s->lookahead == 0) { 1090 s->strstart = 0; 1091 s->block_start = 0L; 1092 s->insert = 0; 1093 } 1094 } 1095 } 1096 flush_pending(strm); 1097 if (strm->avail_out == 0) { 1098 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ 1099 return Z_OK; 1100 } 1101 } 1102 } 1103 1104 if (flush != Z_FINISH) return Z_OK; 1105 if (s->wrap <= 0) return Z_STREAM_END; 1106 1107 /* Write the trailer */ 1108 #ifdef GZIP 1109 if (s->wrap == 2) { 1110 put_byte(s, (Byte)(strm->adler & 0xff)); 1111 put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); 1112 put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); 1113 put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); 1114 put_byte(s, (Byte)(strm->total_in & 0xff)); 1115 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); 1116 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); 1117 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); 1118 } 1119 else 1120 #endif 1121 { 1122 putShortMSB(s, (uInt)(strm->adler >> 16)); 1123 putShortMSB(s, (uInt)(strm->adler & 0xffff)); 1124 } 1125 flush_pending(strm); 1126 /* If avail_out is zero, the application will call deflate again 1127 * to flush the rest. 1128 */ 1129 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ 1130 return s->pending != 0 ? Z_OK : Z_STREAM_END; 1131 } 1132 1133 /* ========================================================================= */ 1134 int ZEXPORT deflateEnd(strm) 1135 z_streamp strm; 1136 { 1137 int status; 1138 1139 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 1140 1141 status = strm->state->status; 1142 1143 /* Deallocate in reverse order of allocations: */ 1144 TRY_FREE(strm, strm->state->pending_buf); 1145 TRY_FREE(strm, strm->state->head); 1146 TRY_FREE(strm, strm->state->prev); 1147 TRY_FREE(strm, strm->state->window); 1148 1149 ZFREE(strm, strm->state); 1150 strm->state = Z_NULL; 1151 1152 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; 1153 } 1154 1155 /* ========================================================================= 1156 * Copy the source state to the destination state. 1157 * To simplify the source, this is not supported for 16-bit MSDOS (which 1158 * doesn't have enough memory anyway to duplicate compression states). 1159 */ 1160 int ZEXPORT deflateCopy(dest, source) 1161 z_streamp dest; 1162 z_streamp source; 1163 { 1164 #ifdef MAXSEG_64K 1165 return Z_STREAM_ERROR; 1166 #else 1167 deflate_state *ds; 1168 deflate_state *ss; 1169 1170 1171 if (deflateStateCheck(source) || dest == Z_NULL) { 1172 return Z_STREAM_ERROR; 1173 } 1174 1175 ss = source->state; 1176 1177 zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); 1178 1179 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); 1180 if (ds == Z_NULL) return Z_MEM_ERROR; 1181 dest->state = (struct internal_state FAR *) ds; 1182 zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state)); 1183 ds->strm = dest; 1184 1185 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); 1186 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); 1187 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); 1188 ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4); 1189 1190 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || 1191 ds->pending_buf == Z_NULL) { 1192 deflateEnd (dest); 1193 return Z_MEM_ERROR; 1194 } 1195 /* following zmemcpy do not work for 16-bit MSDOS */ 1196 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); 1197 zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos)); 1198 zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos)); 1199 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); 1200 1201 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); 1202 ds->sym_buf = ds->pending_buf + ds->lit_bufsize; 1203 1204 ds->l_desc.dyn_tree = ds->dyn_ltree; 1205 ds->d_desc.dyn_tree = ds->dyn_dtree; 1206 ds->bl_desc.dyn_tree = ds->bl_tree; 1207 1208 return Z_OK; 1209 #endif /* MAXSEG_64K */ 1210 } 1211 1212 /* =========================================================================== 1213 * Read a new buffer from the current input stream, update the adler32 1214 * and total number of bytes read. All deflate() input goes through 1215 * this function so some applications may wish to modify it to avoid 1216 * allocating a large strm->next_in buffer and copying from it. 1217 * (See also flush_pending()). 1218 */ 1219 local unsigned read_buf(strm, buf, size) 1220 z_streamp strm; 1221 Bytef *buf; 1222 unsigned size; 1223 { 1224 unsigned len = strm->avail_in; 1225 1226 if (len > size) len = size; 1227 if (len == 0) return 0; 1228 1229 strm->avail_in -= len; 1230 1231 zmemcpy(buf, strm->next_in, len); 1232 if (strm->state->wrap == 1) { 1233 strm->adler = adler32(strm->adler, buf, len); 1234 } 1235 #ifdef GZIP 1236 else if (strm->state->wrap == 2) { 1237 strm->adler = crc32(strm->adler, buf, len); 1238 } 1239 #endif 1240 strm->next_in += len; 1241 strm->total_in += len; 1242 1243 return len; 1244 } 1245 1246 /* =========================================================================== 1247 * Initialize the "longest match" routines for a new zlib stream 1248 */ 1249 local void lm_init(s) 1250 deflate_state *s; 1251 { 1252 s->window_size = (ulg)2L*s->w_size; 1253 1254 CLEAR_HASH(s); 1255 1256 /* Set the default configuration parameters: 1257 */ 1258 s->max_lazy_match = configuration_table[s->level].max_lazy; 1259 s->good_match = configuration_table[s->level].good_length; 1260 s->nice_match = configuration_table[s->level].nice_length; 1261 s->max_chain_length = configuration_table[s->level].max_chain; 1262 1263 s->strstart = 0; 1264 s->block_start = 0L; 1265 s->lookahead = 0; 1266 s->insert = 0; 1267 s->match_length = s->prev_length = MIN_MATCH-1; 1268 s->match_available = 0; 1269 s->ins_h = 0; 1270 } 1271 1272 #ifndef FASTEST 1273 /* =========================================================================== 1274 * Set match_start to the longest match starting at the given string and 1275 * return its length. Matches shorter or equal to prev_length are discarded, 1276 * in which case the result is equal to prev_length and match_start is 1277 * garbage. 1278 * IN assertions: cur_match is the head of the hash chain for the current 1279 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 1280 * OUT assertion: the match length is not greater than s->lookahead. 1281 */ 1282 local uInt longest_match(s, cur_match) 1283 deflate_state *s; 1284 IPos cur_match; /* current match */ 1285 { 1286 unsigned chain_length = s->max_chain_length;/* max hash chain length */ 1287 register Bytef *scan = s->window + s->strstart; /* current string */ 1288 register Bytef *match; /* matched string */ 1289 register int len; /* length of current match */ 1290 int best_len = (int)s->prev_length; /* best match length so far */ 1291 int nice_match = s->nice_match; /* stop if match long enough */ 1292 IPos limit = s->strstart > (IPos)MAX_DIST(s) ? 1293 s->strstart - (IPos)MAX_DIST(s) : NIL; 1294 /* Stop when cur_match becomes <= limit. To simplify the code, 1295 * we prevent matches with the string of window index 0. 1296 */ 1297 Posf *prev = s->prev; 1298 uInt wmask = s->w_mask; 1299 1300 #ifdef UNALIGNED_OK 1301 /* Compare two bytes at a time. Note: this is not always beneficial. 1302 * Try with and without -DUNALIGNED_OK to check. 1303 */ 1304 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; 1305 register ush scan_start = *(ushf*)scan; 1306 register ush scan_end = *(ushf*)(scan + best_len - 1); 1307 #else 1308 register Bytef *strend = s->window + s->strstart + MAX_MATCH; 1309 register Byte scan_end1 = scan[best_len - 1]; 1310 register Byte scan_end = scan[best_len]; 1311 #endif 1312 1313 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. 1314 * It is easy to get rid of this optimization if necessary. 1315 */ 1316 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); 1317 1318 /* Do not waste too much time if we already have a good match: */ 1319 if (s->prev_length >= s->good_match) { 1320 chain_length >>= 2; 1321 } 1322 /* Do not look for matches beyond the end of the input. This is necessary 1323 * to make deflate deterministic. 1324 */ 1325 if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead; 1326 1327 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, 1328 "need lookahead"); 1329 1330 do { 1331 Assert(cur_match < s->strstart, "no future"); 1332 match = s->window + cur_match; 1333 1334 /* Skip to next match if the match length cannot increase 1335 * or if the match length is less than 2. Note that the checks below 1336 * for insufficient lookahead only occur occasionally for performance 1337 * reasons. Therefore uninitialized memory will be accessed, and 1338 * conditional jumps will be made that depend on those values. 1339 * However the length of the match is limited to the lookahead, so 1340 * the output of deflate is not affected by the uninitialized values. 1341 */ 1342 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) 1343 /* This code assumes sizeof(unsigned short) == 2. Do not use 1344 * UNALIGNED_OK if your compiler uses a different size. 1345 */ 1346 if (*(ushf*)(match + best_len - 1) != scan_end || 1347 *(ushf*)match != scan_start) continue; 1348 1349 /* It is not necessary to compare scan[2] and match[2] since they are 1350 * always equal when the other bytes match, given that the hash keys 1351 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at 1352 * strstart + 3, + 5, up to strstart + 257. We check for insufficient 1353 * lookahead only every 4th comparison; the 128th check will be made 1354 * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is 1355 * necessary to put more guard bytes at the end of the window, or 1356 * to check more often for insufficient lookahead. 1357 */ 1358 Assert(scan[2] == match[2], "scan[2]?"); 1359 scan++, match++; 1360 do { 1361 } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) && 1362 *(ushf*)(scan += 2) == *(ushf*)(match += 2) && 1363 *(ushf*)(scan += 2) == *(ushf*)(match += 2) && 1364 *(ushf*)(scan += 2) == *(ushf*)(match += 2) && 1365 scan < strend); 1366 /* The funny "do {}" generates better code on most compilers */ 1367 1368 /* Here, scan <= window + strstart + 257 */ 1369 Assert(scan <= s->window + (unsigned)(s->window_size - 1), 1370 "wild scan"); 1371 if (*scan == *match) scan++; 1372 1373 len = (MAX_MATCH - 1) - (int)(strend - scan); 1374 scan = strend - (MAX_MATCH-1); 1375 1376 #else /* UNALIGNED_OK */ 1377 1378 if (match[best_len] != scan_end || 1379 match[best_len - 1] != scan_end1 || 1380 *match != *scan || 1381 *++match != scan[1]) continue; 1382 1383 /* The check at best_len - 1 can be removed because it will be made 1384 * again later. (This heuristic is not always a win.) 1385 * It is not necessary to compare scan[2] and match[2] since they 1386 * are always equal when the other bytes match, given that 1387 * the hash keys are equal and that HASH_BITS >= 8. 1388 */ 1389 scan += 2, match++; 1390 Assert(*scan == *match, "match[2]?"); 1391 1392 /* We check for insufficient lookahead only every 8th comparison; 1393 * the 256th check will be made at strstart + 258. 1394 */ 1395 do { 1396 } while (*++scan == *++match && *++scan == *++match && 1397 *++scan == *++match && *++scan == *++match && 1398 *++scan == *++match && *++scan == *++match && 1399 *++scan == *++match && *++scan == *++match && 1400 scan < strend); 1401 1402 Assert(scan <= s->window + (unsigned)(s->window_size - 1), 1403 "wild scan"); 1404 1405 len = MAX_MATCH - (int)(strend - scan); 1406 scan = strend - MAX_MATCH; 1407 1408 #endif /* UNALIGNED_OK */ 1409 1410 if (len > best_len) { 1411 s->match_start = cur_match; 1412 best_len = len; 1413 if (len >= nice_match) break; 1414 #ifdef UNALIGNED_OK 1415 scan_end = *(ushf*)(scan + best_len - 1); 1416 #else 1417 scan_end1 = scan[best_len - 1]; 1418 scan_end = scan[best_len]; 1419 #endif 1420 } 1421 } while ((cur_match = prev[cur_match & wmask]) > limit 1422 && --chain_length != 0); 1423 1424 if ((uInt)best_len <= s->lookahead) return (uInt)best_len; 1425 return s->lookahead; 1426 } 1427 1428 #else /* FASTEST */ 1429 1430 /* --------------------------------------------------------------------------- 1431 * Optimized version for FASTEST only 1432 */ 1433 local uInt longest_match(s, cur_match) 1434 deflate_state *s; 1435 IPos cur_match; /* current match */ 1436 { 1437 register Bytef *scan = s->window + s->strstart; /* current string */ 1438 register Bytef *match; /* matched string */ 1439 register int len; /* length of current match */ 1440 register Bytef *strend = s->window + s->strstart + MAX_MATCH; 1441 1442 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. 1443 * It is easy to get rid of this optimization if necessary. 1444 */ 1445 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); 1446 1447 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, 1448 "need lookahead"); 1449 1450 Assert(cur_match < s->strstart, "no future"); 1451 1452 match = s->window + cur_match; 1453 1454 /* Return failure if the match length is less than 2: 1455 */ 1456 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; 1457 1458 /* The check at best_len - 1 can be removed because it will be made 1459 * again later. (This heuristic is not always a win.) 1460 * It is not necessary to compare scan[2] and match[2] since they 1461 * are always equal when the other bytes match, given that 1462 * the hash keys are equal and that HASH_BITS >= 8. 1463 */ 1464 scan += 2, match += 2; 1465 Assert(*scan == *match, "match[2]?"); 1466 1467 /* We check for insufficient lookahead only every 8th comparison; 1468 * the 256th check will be made at strstart + 258. 1469 */ 1470 do { 1471 } while (*++scan == *++match && *++scan == *++match && 1472 *++scan == *++match && *++scan == *++match && 1473 *++scan == *++match && *++scan == *++match && 1474 *++scan == *++match && *++scan == *++match && 1475 scan < strend); 1476 1477 Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan"); 1478 1479 len = MAX_MATCH - (int)(strend - scan); 1480 1481 if (len < MIN_MATCH) return MIN_MATCH - 1; 1482 1483 s->match_start = cur_match; 1484 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; 1485 } 1486 1487 #endif /* FASTEST */ 1488 1489 #ifdef ZLIB_DEBUG 1490 1491 #define EQUAL 0 1492 /* result of memcmp for equal strings */ 1493 1494 /* =========================================================================== 1495 * Check that the match at match_start is indeed a match. 1496 */ 1497 local void check_match(s, start, match, length) 1498 deflate_state *s; 1499 IPos start, match; 1500 int length; 1501 { 1502 /* check that the match is indeed a match */ 1503 if (zmemcmp(s->window + match, 1504 s->window + start, length) != EQUAL) { 1505 fprintf(stderr, " start %u, match %u, length %d\n", 1506 start, match, length); 1507 do { 1508 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); 1509 } while (--length != 0); 1510 z_error("invalid match"); 1511 } 1512 if (z_verbose > 1) { 1513 fprintf(stderr,"\\[%d,%d]", start - match, length); 1514 do { putc(s->window[start++], stderr); } while (--length != 0); 1515 } 1516 } 1517 #else 1518 # define check_match(s, start, match, length) 1519 #endif /* ZLIB_DEBUG */ 1520 1521 /* =========================================================================== 1522 * Fill the window when the lookahead becomes insufficient. 1523 * Updates strstart and lookahead. 1524 * 1525 * IN assertion: lookahead < MIN_LOOKAHEAD 1526 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD 1527 * At least one byte has been read, or avail_in == 0; reads are 1528 * performed for at least two bytes (required for the zip translate_eol 1529 * option -- not supported here). 1530 */ 1531 local void fill_window(s) 1532 deflate_state *s; 1533 { 1534 unsigned n; 1535 unsigned more; /* Amount of free space at the end of the window. */ 1536 uInt wsize = s->w_size; 1537 1538 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); 1539 1540 do { 1541 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); 1542 1543 /* Deal with !@#$% 64K limit: */ 1544 if (sizeof(int) <= 2) { 1545 if (more == 0 && s->strstart == 0 && s->lookahead == 0) { 1546 more = wsize; 1547 1548 } else if (more == (unsigned)(-1)) { 1549 /* Very unlikely, but possible on 16 bit machine if 1550 * strstart == 0 && lookahead == 1 (input done a byte at time) 1551 */ 1552 more--; 1553 } 1554 } 1555 1556 /* If the window is almost full and there is insufficient lookahead, 1557 * move the upper half to the lower one to make room in the upper half. 1558 */ 1559 if (s->strstart >= wsize + MAX_DIST(s)) { 1560 1561 zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more); 1562 s->match_start -= wsize; 1563 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ 1564 s->block_start -= (long) wsize; 1565 if (s->insert > s->strstart) 1566 s->insert = s->strstart; 1567 slide_hash(s); 1568 more += wsize; 1569 } 1570 if (s->strm->avail_in == 0) break; 1571 1572 /* If there was no sliding: 1573 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && 1574 * more == window_size - lookahead - strstart 1575 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) 1576 * => more >= window_size - 2*WSIZE + 2 1577 * In the BIG_MEM or MMAP case (not yet supported), 1578 * window_size == input_size + MIN_LOOKAHEAD && 1579 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. 1580 * Otherwise, window_size == 2*WSIZE so more >= 2. 1581 * If there was sliding, more >= WSIZE. So in all cases, more >= 2. 1582 */ 1583 Assert(more >= 2, "more < 2"); 1584 1585 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); 1586 s->lookahead += n; 1587 1588 /* Initialize the hash value now that we have some input: */ 1589 if (s->lookahead + s->insert >= MIN_MATCH) { 1590 uInt str = s->strstart - s->insert; 1591 s->ins_h = s->window[str]; 1592 UPDATE_HASH(s, s->ins_h, s->window[str + 1]); 1593 #if MIN_MATCH != 3 1594 Call UPDATE_HASH() MIN_MATCH-3 more times 1595 #endif 1596 while (s->insert) { 1597 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); 1598 #ifndef FASTEST 1599 s->prev[str & s->w_mask] = s->head[s->ins_h]; 1600 #endif 1601 s->head[s->ins_h] = (Pos)str; 1602 str++; 1603 s->insert--; 1604 if (s->lookahead + s->insert < MIN_MATCH) 1605 break; 1606 } 1607 } 1608 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, 1609 * but this is not important since only literal bytes will be emitted. 1610 */ 1611 1612 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); 1613 1614 /* If the WIN_INIT bytes after the end of the current data have never been 1615 * written, then zero those bytes in order to avoid memory check reports of 1616 * the use of uninitialized (or uninitialised as Julian writes) bytes by 1617 * the longest match routines. Update the high water mark for the next 1618 * time through here. WIN_INIT is set to MAX_MATCH since the longest match 1619 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. 1620 */ 1621 if (s->high_water < s->window_size) { 1622 ulg curr = s->strstart + (ulg)(s->lookahead); 1623 ulg init; 1624 1625 if (s->high_water < curr) { 1626 /* Previous high water mark below current data -- zero WIN_INIT 1627 * bytes or up to end of window, whichever is less. 1628 */ 1629 init = s->window_size - curr; 1630 if (init > WIN_INIT) 1631 init = WIN_INIT; 1632 zmemzero(s->window + curr, (unsigned)init); 1633 s->high_water = curr + init; 1634 } 1635 else if (s->high_water < (ulg)curr + WIN_INIT) { 1636 /* High water mark at or above current data, but below current data 1637 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up 1638 * to end of window, whichever is less. 1639 */ 1640 init = (ulg)curr + WIN_INIT - s->high_water; 1641 if (init > s->window_size - s->high_water) 1642 init = s->window_size - s->high_water; 1643 zmemzero(s->window + s->high_water, (unsigned)init); 1644 s->high_water += init; 1645 } 1646 } 1647 1648 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, 1649 "not enough room for search"); 1650 } 1651 1652 /* =========================================================================== 1653 * Flush the current block, with given end-of-file flag. 1654 * IN assertion: strstart is set to the end of the current match. 1655 */ 1656 #define FLUSH_BLOCK_ONLY(s, last) { \ 1657 _tr_flush_block(s, (s->block_start >= 0L ? \ 1658 (charf *)&s->window[(unsigned)s->block_start] : \ 1659 (charf *)Z_NULL), \ 1660 (ulg)((long)s->strstart - s->block_start), \ 1661 (last)); \ 1662 s->block_start = s->strstart; \ 1663 flush_pending(s->strm); \ 1664 Tracev((stderr,"[FLUSH]")); \ 1665 } 1666 1667 /* Same but force premature exit if necessary. */ 1668 #define FLUSH_BLOCK(s, last) { \ 1669 FLUSH_BLOCK_ONLY(s, last); \ 1670 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ 1671 } 1672 1673 /* Maximum stored block length in deflate format (not including header). */ 1674 #define MAX_STORED 65535 1675 1676 /* Minimum of a and b. */ 1677 #define MIN(a, b) ((a) > (b) ? (b) : (a)) 1678 1679 /* =========================================================================== 1680 * Copy without compression as much as possible from the input stream, return 1681 * the current block state. 1682 * 1683 * In case deflateParams() is used to later switch to a non-zero compression 1684 * level, s->matches (otherwise unused when storing) keeps track of the number 1685 * of hash table slides to perform. If s->matches is 1, then one hash table 1686 * slide will be done when switching. If s->matches is 2, the maximum value 1687 * allowed here, then the hash table will be cleared, since two or more slides 1688 * is the same as a clear. 1689 * 1690 * deflate_stored() is written to minimize the number of times an input byte is 1691 * copied. It is most efficient with large input and output buffers, which 1692 * maximizes the opportunities to have a single copy from next_in to next_out. 1693 */ 1694 local block_state deflate_stored(s, flush) 1695 deflate_state *s; 1696 int flush; 1697 { 1698 /* Smallest worthy block size when not flushing or finishing. By default 1699 * this is 32K. This can be as small as 507 bytes for memLevel == 1. For 1700 * large input and output buffers, the stored block size will be larger. 1701 */ 1702 unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size); 1703 1704 /* Copy as many min_block or larger stored blocks directly to next_out as 1705 * possible. If flushing, copy the remaining available input to next_out as 1706 * stored blocks, if there is enough space. 1707 */ 1708 unsigned len, left, have, last = 0; 1709 unsigned used = s->strm->avail_in; 1710 do { 1711 /* Set len to the maximum size block that we can copy directly with the 1712 * available input data and output space. Set left to how much of that 1713 * would be copied from what's left in the window. 1714 */ 1715 len = MAX_STORED; /* maximum deflate stored block length */ 1716 have = (s->bi_valid + 42) >> 3; /* number of header bytes */ 1717 if (s->strm->avail_out < have) /* need room for header */ 1718 break; 1719 /* maximum stored block length that will fit in avail_out: */ 1720 have = s->strm->avail_out - have; 1721 left = s->strstart - s->block_start; /* bytes left in window */ 1722 if (len > (ulg)left + s->strm->avail_in) 1723 len = left + s->strm->avail_in; /* limit len to the input */ 1724 if (len > have) 1725 len = have; /* limit len to the output */ 1726 1727 /* If the stored block would be less than min_block in length, or if 1728 * unable to copy all of the available input when flushing, then try 1729 * copying to the window and the pending buffer instead. Also don't 1730 * write an empty block when flushing -- deflate() does that. 1731 */ 1732 if (len < min_block && ((len == 0 && flush != Z_FINISH) || 1733 flush == Z_NO_FLUSH || 1734 len != left + s->strm->avail_in)) 1735 break; 1736 1737 /* Make a dummy stored block in pending to get the header bytes, 1738 * including any pending bits. This also updates the debugging counts. 1739 */ 1740 last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0; 1741 _tr_stored_block(s, (char *)0, 0L, last); 1742 1743 /* Replace the lengths in the dummy stored block with len. */ 1744 s->pending_buf[s->pending - 4] = len; 1745 s->pending_buf[s->pending - 3] = len >> 8; 1746 s->pending_buf[s->pending - 2] = ~len; 1747 s->pending_buf[s->pending - 1] = ~len >> 8; 1748 1749 /* Write the stored block header bytes. */ 1750 flush_pending(s->strm); 1751 1752 #ifdef ZLIB_DEBUG 1753 /* Update debugging counts for the data about to be copied. */ 1754 s->compressed_len += len << 3; 1755 s->bits_sent += len << 3; 1756 #endif 1757 1758 /* Copy uncompressed bytes from the window to next_out. */ 1759 if (left) { 1760 if (left > len) 1761 left = len; 1762 zmemcpy(s->strm->next_out, s->window + s->block_start, left); 1763 s->strm->next_out += left; 1764 s->strm->avail_out -= left; 1765 s->strm->total_out += left; 1766 s->block_start += left; 1767 len -= left; 1768 } 1769 1770 /* Copy uncompressed bytes directly from next_in to next_out, updating 1771 * the check value. 1772 */ 1773 if (len) { 1774 read_buf(s->strm, s->strm->next_out, len); 1775 s->strm->next_out += len; 1776 s->strm->avail_out -= len; 1777 s->strm->total_out += len; 1778 } 1779 } while (last == 0); 1780 1781 /* Update the sliding window with the last s->w_size bytes of the copied 1782 * data, or append all of the copied data to the existing window if less 1783 * than s->w_size bytes were copied. Also update the number of bytes to 1784 * insert in the hash tables, in the event that deflateParams() switches to 1785 * a non-zero compression level. 1786 */ 1787 used -= s->strm->avail_in; /* number of input bytes directly copied */ 1788 if (used) { 1789 /* If any input was used, then no unused input remains in the window, 1790 * therefore s->block_start == s->strstart. 1791 */ 1792 if (used >= s->w_size) { /* supplant the previous history */ 1793 s->matches = 2; /* clear hash */ 1794 zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size); 1795 s->strstart = s->w_size; 1796 s->insert = s->strstart; 1797 } 1798 else { 1799 if (s->window_size - s->strstart <= used) { 1800 /* Slide the window down. */ 1801 s->strstart -= s->w_size; 1802 zmemcpy(s->window, s->window + s->w_size, s->strstart); 1803 if (s->matches < 2) 1804 s->matches++; /* add a pending slide_hash() */ 1805 if (s->insert > s->strstart) 1806 s->insert = s->strstart; 1807 } 1808 zmemcpy(s->window + s->strstart, s->strm->next_in - used, used); 1809 s->strstart += used; 1810 s->insert += MIN(used, s->w_size - s->insert); 1811 } 1812 s->block_start = s->strstart; 1813 } 1814 if (s->high_water < s->strstart) 1815 s->high_water = s->strstart; 1816 1817 /* If the last block was written to next_out, then done. */ 1818 if (last) 1819 return finish_done; 1820 1821 /* If flushing and all input has been consumed, then done. */ 1822 if (flush != Z_NO_FLUSH && flush != Z_FINISH && 1823 s->strm->avail_in == 0 && (long)s->strstart == s->block_start) 1824 return block_done; 1825 1826 /* Fill the window with any remaining input. */ 1827 have = s->window_size - s->strstart; 1828 if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) { 1829 /* Slide the window down. */ 1830 s->block_start -= s->w_size; 1831 s->strstart -= s->w_size; 1832 zmemcpy(s->window, s->window + s->w_size, s->strstart); 1833 if (s->matches < 2) 1834 s->matches++; /* add a pending slide_hash() */ 1835 have += s->w_size; /* more space now */ 1836 if (s->insert > s->strstart) 1837 s->insert = s->strstart; 1838 } 1839 if (have > s->strm->avail_in) 1840 have = s->strm->avail_in; 1841 if (have) { 1842 read_buf(s->strm, s->window + s->strstart, have); 1843 s->strstart += have; 1844 s->insert += MIN(have, s->w_size - s->insert); 1845 } 1846 if (s->high_water < s->strstart) 1847 s->high_water = s->strstart; 1848 1849 /* There was not enough avail_out to write a complete worthy or flushed 1850 * stored block to next_out. Write a stored block to pending instead, if we 1851 * have enough input for a worthy block, or if flushing and there is enough 1852 * room for the remaining input as a stored block in the pending buffer. 1853 */ 1854 have = (s->bi_valid + 42) >> 3; /* number of header bytes */ 1855 /* maximum stored block length that will fit in pending: */ 1856 have = MIN(s->pending_buf_size - have, MAX_STORED); 1857 min_block = MIN(have, s->w_size); 1858 left = s->strstart - s->block_start; 1859 if (left >= min_block || 1860 ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH && 1861 s->strm->avail_in == 0 && left <= have)) { 1862 len = MIN(left, have); 1863 last = flush == Z_FINISH && s->strm->avail_in == 0 && 1864 len == left ? 1 : 0; 1865 _tr_stored_block(s, (charf *)s->window + s->block_start, len, last); 1866 s->block_start += len; 1867 flush_pending(s->strm); 1868 } 1869 1870 /* We've done all we can with the available input and output. */ 1871 return last ? finish_started : need_more; 1872 } 1873 1874 /* =========================================================================== 1875 * Compress as much as possible from the input stream, return the current 1876 * block state. 1877 * This function does not perform lazy evaluation of matches and inserts 1878 * new strings in the dictionary only for unmatched strings or for short 1879 * matches. It is used only for the fast compression options. 1880 */ 1881 local block_state deflate_fast(s, flush) 1882 deflate_state *s; 1883 int flush; 1884 { 1885 IPos hash_head; /* head of the hash chain */ 1886 int bflush; /* set if current block must be flushed */ 1887 1888 for (;;) { 1889 /* Make sure that we always have enough lookahead, except 1890 * at the end of the input file. We need MAX_MATCH bytes 1891 * for the next match, plus MIN_MATCH bytes to insert the 1892 * string following the next match. 1893 */ 1894 if (s->lookahead < MIN_LOOKAHEAD) { 1895 fill_window(s); 1896 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { 1897 return need_more; 1898 } 1899 if (s->lookahead == 0) break; /* flush the current block */ 1900 } 1901 1902 /* Insert the string window[strstart .. strstart + 2] in the 1903 * dictionary, and set hash_head to the head of the hash chain: 1904 */ 1905 hash_head = NIL; 1906 if (s->lookahead >= MIN_MATCH) { 1907 INSERT_STRING(s, s->strstart, hash_head); 1908 } 1909 1910 /* Find the longest match, discarding those <= prev_length. 1911 * At this point we have always match_length < MIN_MATCH 1912 */ 1913 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { 1914 /* To simplify the code, we prevent matches with the string 1915 * of window index 0 (in particular we have to avoid a match 1916 * of the string with itself at the start of the input file). 1917 */ 1918 s->match_length = longest_match (s, hash_head); 1919 /* longest_match() sets match_start */ 1920 } 1921 if (s->match_length >= MIN_MATCH) { 1922 check_match(s, s->strstart, s->match_start, s->match_length); 1923 1924 _tr_tally_dist(s, s->strstart - s->match_start, 1925 s->match_length - MIN_MATCH, bflush); 1926 1927 s->lookahead -= s->match_length; 1928 1929 /* Insert new strings in the hash table only if the match length 1930 * is not too large. This saves time but degrades compression. 1931 */ 1932 #ifndef FASTEST 1933 if (s->match_length <= s->max_insert_length && 1934 s->lookahead >= MIN_MATCH) { 1935 s->match_length--; /* string at strstart already in table */ 1936 do { 1937 s->strstart++; 1938 INSERT_STRING(s, s->strstart, hash_head); 1939 /* strstart never exceeds WSIZE-MAX_MATCH, so there are 1940 * always MIN_MATCH bytes ahead. 1941 */ 1942 } while (--s->match_length != 0); 1943 s->strstart++; 1944 } else 1945 #endif 1946 { 1947 s->strstart += s->match_length; 1948 s->match_length = 0; 1949 s->ins_h = s->window[s->strstart]; 1950 UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]); 1951 #if MIN_MATCH != 3 1952 Call UPDATE_HASH() MIN_MATCH-3 more times 1953 #endif 1954 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not 1955 * matter since it will be recomputed at next deflate call. 1956 */ 1957 } 1958 } else { 1959 /* No match, output a literal byte */ 1960 Tracevv((stderr,"%c", s->window[s->strstart])); 1961 _tr_tally_lit(s, s->window[s->strstart], bflush); 1962 s->lookahead--; 1963 s->strstart++; 1964 } 1965 if (bflush) FLUSH_BLOCK(s, 0); 1966 } 1967 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; 1968 if (flush == Z_FINISH) { 1969 FLUSH_BLOCK(s, 1); 1970 return finish_done; 1971 } 1972 if (s->sym_next) 1973 FLUSH_BLOCK(s, 0); 1974 return block_done; 1975 } 1976 1977 #ifndef FASTEST 1978 /* =========================================================================== 1979 * Same as above, but achieves better compression. We use a lazy 1980 * evaluation for matches: a match is finally adopted only if there is 1981 * no better match at the next window position. 1982 */ 1983 local block_state deflate_slow(s, flush) 1984 deflate_state *s; 1985 int flush; 1986 { 1987 IPos hash_head; /* head of hash chain */ 1988 int bflush; /* set if current block must be flushed */ 1989 1990 /* Process the input block. */ 1991 for (;;) { 1992 /* Make sure that we always have enough lookahead, except 1993 * at the end of the input file. We need MAX_MATCH bytes 1994 * for the next match, plus MIN_MATCH bytes to insert the 1995 * string following the next match. 1996 */ 1997 if (s->lookahead < MIN_LOOKAHEAD) { 1998 fill_window(s); 1999 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { 2000 return need_more; 2001 } 2002 if (s->lookahead == 0) break; /* flush the current block */ 2003 } 2004 2005 /* Insert the string window[strstart .. strstart + 2] in the 2006 * dictionary, and set hash_head to the head of the hash chain: 2007 */ 2008 hash_head = NIL; 2009 if (s->lookahead >= MIN_MATCH) { 2010 INSERT_STRING(s, s->strstart, hash_head); 2011 } 2012 2013 /* Find the longest match, discarding those <= prev_length. 2014 */ 2015 s->prev_length = s->match_length, s->prev_match = s->match_start; 2016 s->match_length = MIN_MATCH-1; 2017 2018 if (hash_head != NIL && s->prev_length < s->max_lazy_match && 2019 s->strstart - hash_head <= MAX_DIST(s)) { 2020 /* To simplify the code, we prevent matches with the string 2021 * of window index 0 (in particular we have to avoid a match 2022 * of the string with itself at the start of the input file). 2023 */ 2024 s->match_length = longest_match (s, hash_head); 2025 /* longest_match() sets match_start */ 2026 2027 if (s->match_length <= 5 && (s->strategy == Z_FILTERED 2028 #if TOO_FAR <= 32767 2029 || (s->match_length == MIN_MATCH && 2030 s->strstart - s->match_start > TOO_FAR) 2031 #endif 2032 )) { 2033 2034 /* If prev_match is also MIN_MATCH, match_start is garbage 2035 * but we will ignore the current match anyway. 2036 */ 2037 s->match_length = MIN_MATCH-1; 2038 } 2039 } 2040 /* If there was a match at the previous step and the current 2041 * match is not better, output the previous match: 2042 */ 2043 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { 2044 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; 2045 /* Do not insert strings in hash table beyond this. */ 2046 2047 check_match(s, s->strstart - 1, s->prev_match, s->prev_length); 2048 2049 _tr_tally_dist(s, s->strstart - 1 - s->prev_match, 2050 s->prev_length - MIN_MATCH, bflush); 2051 2052 /* Insert in hash table all strings up to the end of the match. 2053 * strstart - 1 and strstart are already inserted. If there is not 2054 * enough lookahead, the last two strings are not inserted in 2055 * the hash table. 2056 */ 2057 s->lookahead -= s->prev_length - 1; 2058 s->prev_length -= 2; 2059 do { 2060 if (++s->strstart <= max_insert) { 2061 INSERT_STRING(s, s->strstart, hash_head); 2062 } 2063 } while (--s->prev_length != 0); 2064 s->match_available = 0; 2065 s->match_length = MIN_MATCH-1; 2066 s->strstart++; 2067 2068 if (bflush) FLUSH_BLOCK(s, 0); 2069 2070 } else if (s->match_available) { 2071 /* If there was no match at the previous position, output a 2072 * single literal. If there was a match but the current match 2073 * is longer, truncate the previous match to a single literal. 2074 */ 2075 Tracevv((stderr,"%c", s->window[s->strstart - 1])); 2076 _tr_tally_lit(s, s->window[s->strstart - 1], bflush); 2077 if (bflush) { 2078 FLUSH_BLOCK_ONLY(s, 0); 2079 } 2080 s->strstart++; 2081 s->lookahead--; 2082 if (s->strm->avail_out == 0) return need_more; 2083 } else { 2084 /* There is no previous match to compare with, wait for 2085 * the next step to decide. 2086 */ 2087 s->match_available = 1; 2088 s->strstart++; 2089 s->lookahead--; 2090 } 2091 } 2092 Assert (flush != Z_NO_FLUSH, "no flush?"); 2093 if (s->match_available) { 2094 Tracevv((stderr,"%c", s->window[s->strstart - 1])); 2095 _tr_tally_lit(s, s->window[s->strstart - 1], bflush); 2096 s->match_available = 0; 2097 } 2098 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; 2099 if (flush == Z_FINISH) { 2100 FLUSH_BLOCK(s, 1); 2101 return finish_done; 2102 } 2103 if (s->sym_next) 2104 FLUSH_BLOCK(s, 0); 2105 return block_done; 2106 } 2107 #endif /* FASTEST */ 2108 2109 /* =========================================================================== 2110 * For Z_RLE, simply look for runs of bytes, generate matches only of distance 2111 * one. Do not maintain a hash table. (It will be regenerated if this run of 2112 * deflate switches away from Z_RLE.) 2113 */ 2114 local block_state deflate_rle(s, flush) 2115 deflate_state *s; 2116 int flush; 2117 { 2118 int bflush; /* set if current block must be flushed */ 2119 uInt prev; /* byte at distance one to match */ 2120 Bytef *scan, *strend; /* scan goes up to strend for length of run */ 2121 2122 for (;;) { 2123 /* Make sure that we always have enough lookahead, except 2124 * at the end of the input file. We need MAX_MATCH bytes 2125 * for the longest run, plus one for the unrolled loop. 2126 */ 2127 if (s->lookahead <= MAX_MATCH) { 2128 fill_window(s); 2129 if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { 2130 return need_more; 2131 } 2132 if (s->lookahead == 0) break; /* flush the current block */ 2133 } 2134 2135 /* See how many times the previous byte repeats */ 2136 s->match_length = 0; 2137 if (s->lookahead >= MIN_MATCH && s->strstart > 0) { 2138 scan = s->window + s->strstart - 1; 2139 prev = *scan; 2140 if (prev == *++scan && prev == *++scan && prev == *++scan) { 2141 strend = s->window + s->strstart + MAX_MATCH; 2142 do { 2143 } while (prev == *++scan && prev == *++scan && 2144 prev == *++scan && prev == *++scan && 2145 prev == *++scan && prev == *++scan && 2146 prev == *++scan && prev == *++scan && 2147 scan < strend); 2148 s->match_length = MAX_MATCH - (uInt)(strend - scan); 2149 if (s->match_length > s->lookahead) 2150 s->match_length = s->lookahead; 2151 } 2152 Assert(scan <= s->window + (uInt)(s->window_size - 1), 2153 "wild scan"); 2154 } 2155 2156 /* Emit match if have run of MIN_MATCH or longer, else emit literal */ 2157 if (s->match_length >= MIN_MATCH) { 2158 check_match(s, s->strstart, s->strstart - 1, s->match_length); 2159 2160 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); 2161 2162 s->lookahead -= s->match_length; 2163 s->strstart += s->match_length; 2164 s->match_length = 0; 2165 } else { 2166 /* No match, output a literal byte */ 2167 Tracevv((stderr,"%c", s->window[s->strstart])); 2168 _tr_tally_lit(s, s->window[s->strstart], bflush); 2169 s->lookahead--; 2170 s->strstart++; 2171 } 2172 if (bflush) FLUSH_BLOCK(s, 0); 2173 } 2174 s->insert = 0; 2175 if (flush == Z_FINISH) { 2176 FLUSH_BLOCK(s, 1); 2177 return finish_done; 2178 } 2179 if (s->sym_next) 2180 FLUSH_BLOCK(s, 0); 2181 return block_done; 2182 } 2183 2184 /* =========================================================================== 2185 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. 2186 * (It will be regenerated if this run of deflate switches away from Huffman.) 2187 */ 2188 local block_state deflate_huff(s, flush) 2189 deflate_state *s; 2190 int flush; 2191 { 2192 int bflush; /* set if current block must be flushed */ 2193 2194 for (;;) { 2195 /* Make sure that we have a literal to write. */ 2196 if (s->lookahead == 0) { 2197 fill_window(s); 2198 if (s->lookahead == 0) { 2199 if (flush == Z_NO_FLUSH) 2200 return need_more; 2201 break; /* flush the current block */ 2202 } 2203 } 2204 2205 /* Output a literal byte */ 2206 s->match_length = 0; 2207 Tracevv((stderr,"%c", s->window[s->strstart])); 2208 _tr_tally_lit(s, s->window[s->strstart], bflush); 2209 s->lookahead--; 2210 s->strstart++; 2211 if (bflush) FLUSH_BLOCK(s, 0); 2212 } 2213 s->insert = 0; 2214 if (flush == Z_FINISH) { 2215 FLUSH_BLOCK(s, 1); 2216 return finish_done; 2217 } 2218 if (s->sym_next) 2219 FLUSH_BLOCK(s, 0); 2220 return block_done; 2221 } 2222