Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/externals/zlib/src/adler32.c

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 /* adler32.c -- compute the Adler-32 checksum of a data stream
  2  * Copyright (C) 1995-2011, 2016 Mark Adler
  3  * For conditions of distribution and use, see copyright notice in zlib.h
  4  */
  5 
  6 /* @(#) $Id$ */
  7 
  8 #include "zutil.h"
  9 
 10 local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
 11 
 12 #define BASE 65521U     /* largest prime smaller than 65536 */
 13 #define NMAX 5552
 14 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
 15 
 16 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
 17 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
 18 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
 19 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
 20 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
 21 
 22 /* use NO_DIVIDE if your processor does not do division in hardware --
 23    try it both ways to see which is faster */
 24 #ifdef NO_DIVIDE
 25 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
 26    (thank you to John Reiser for pointing this out) */
 27 #  define CHOP(a) \
 28     do { \
 29         unsigned long tmp = a >> 16; \
 30         a &= 0xffffUL; \
 31         a += (tmp << 4) - tmp; \
 32     } while (0)
 33 #  define MOD28(a) \
 34     do { \
 35         CHOP(a); \
 36         if (a >= BASE) a -= BASE; \
 37     } while (0)
 38 #  define MOD(a) \
 39     do { \
 40         CHOP(a); \
 41         MOD28(a); \
 42     } while (0)
 43 #  define MOD63(a) \
 44     do { /* this assumes a is not negative */ \
 45         z_off64_t tmp = a >> 32; \
 46         a &= 0xffffffffL; \
 47         a += (tmp << 8) - (tmp << 5) + tmp; \
 48         tmp = a >> 16; \
 49         a &= 0xffffL; \
 50         a += (tmp << 4) - tmp; \
 51         tmp = a >> 16; \
 52         a &= 0xffffL; \
 53         a += (tmp << 4) - tmp; \
 54         if (a >= BASE) a -= BASE; \
 55     } while (0)
 56 #else
 57 #  define MOD(a) a %= BASE
 58 #  define MOD28(a) a %= BASE
 59 #  define MOD63(a) a %= BASE
 60 #endif
 61 
 62 /* ========================================================================= */
 63 uLong ZEXPORT adler32_z(adler, buf, len)
 64     uLong adler;
 65     const Bytef *buf;
 66     z_size_t len;
 67 {
 68     unsigned long sum2;
 69     unsigned n;
 70 
 71     /* split Adler-32 into component sums */
 72     sum2 = (adler >> 16) & 0xffff;
 73     adler &= 0xffff;
 74 
 75     /* in case user likes doing a byte at a time, keep it fast */
 76     if (len == 1) {
 77         adler += buf[0];
 78         if (adler >= BASE)
 79             adler -= BASE;
 80         sum2 += adler;
 81         if (sum2 >= BASE)
 82             sum2 -= BASE;
 83         return adler | (sum2 << 16);
 84     }
 85 
 86     /* initial Adler-32 value (deferred check for len == 1 speed) */
 87     if (buf == Z_NULL)
 88         return 1L;
 89 
 90     /* in case short lengths are provided, keep it somewhat fast */
 91     if (len < 16) {
 92         while (len--) {
 93             adler += *buf++;
 94             sum2 += adler;
 95         }
 96         if (adler >= BASE)
 97             adler -= BASE;
 98         MOD28(sum2);            /* only added so many BASE's */
 99         return adler | (sum2 << 16);
100     }
101 
102     /* do length NMAX blocks -- requires just one modulo operation */
103     while (len >= NMAX) {
104         len -= NMAX;
105         n = NMAX / 16;          /* NMAX is divisible by 16 */
106         do {
107             DO16(buf);          /* 16 sums unrolled */
108             buf += 16;
109         } while (--n);
110         MOD(adler);
111         MOD(sum2);
112     }
113 
114     /* do remaining bytes (less than NMAX, still just one modulo) */
115     if (len) {                  /* avoid modulos if none remaining */
116         while (len >= 16) {
117             len -= 16;
118             DO16(buf);
119             buf += 16;
120         }
121         while (len--) {
122             adler += *buf++;
123             sum2 += adler;
124         }
125         MOD(adler);
126         MOD(sum2);
127     }
128 
129     /* return recombined sums */
130     return adler | (sum2 << 16);
131 }
132 
133 /* ========================================================================= */
134 uLong ZEXPORT adler32(adler, buf, len)
135     uLong adler;
136     const Bytef *buf;
137     uInt len;
138 {
139     return adler32_z(adler, buf, len);
140 }
141 
142 /* ========================================================================= */
143 local uLong adler32_combine_(adler1, adler2, len2)
144     uLong adler1;
145     uLong adler2;
146     z_off64_t len2;
147 {
148     unsigned long sum1;
149     unsigned long sum2;
150     unsigned rem;
151 
152     /* for negative len, return invalid adler32 as a clue for debugging */
153     if (len2 < 0)
154         return 0xffffffffUL;
155 
156     /* the derivation of this formula is left as an exercise for the reader */
157     MOD63(len2);                /* assumes len2 >= 0 */
158     rem = (unsigned)len2;
159     sum1 = adler1 & 0xffff;
160     sum2 = rem * sum1;
161     MOD(sum2);
162     sum1 += (adler2 & 0xffff) + BASE - 1;
163     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
164     if (sum1 >= BASE) sum1 -= BASE;
165     if (sum1 >= BASE) sum1 -= BASE;
166     if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
167     if (sum2 >= BASE) sum2 -= BASE;
168     return sum1 | (sum2 << 16);
169 }
170 
171 /* ========================================================================= */
172 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
173     uLong adler1;
174     uLong adler2;
175     z_off_t len2;
176 {
177     return adler32_combine_(adler1, adler2, len2);
178 }
179 
180 uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
181     uLong adler1;
182     uLong adler2;
183     z_off64_t len2;
184 {
185     return adler32_combine_(adler1, adler2, len2);
186 }
187