Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/externals/g4tools/include/tools/hatcher.icc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //  Created by Laurent Garnier on Fri Jan 30 2004.
  2 
  3 //#define TOOLS_HATCHER_DEBUG
  4 
  5 #ifdef TOOLS_HATCHER_DEBUG
  6 #include <cstdio>
  7 #endif
  8 
  9 namespace tools {
 10 
 11 //////////////////////////////////////////////////////////////////////////////
 12 // test if the polygone given is correct for hatching
 13 // return FALSE if :
 14 //    - All points are not in the same plan
 15 //    - Number of points <3
 16 //    - Offset point is not in the same plan
 17 //    - There is less than three different points
 18 //    - The vector from point[0],point[1] is colinear to point[0],lastPoint
 19 //////////////////////////////////////////////////////////////////////////////
 20 
 21 inline bool hatcher::check_polyline(vec3f* listPoints,unsigned int aNumber){
 22 
 23   unsigned int firstOffset =0;
 24 
 25   if ( listPoints[0].equals(listPoints[1],FLT_EPSILON*FLT_EPSILON*10)) {
 26     firstOffset =1;
 27   }
 28 
 29   if ( listPoints[0].equals(listPoints[aNumber-1],FLT_EPSILON*FLT_EPSILON*10)) {
 30     aNumber --;
 31   }
 32 
 33   if ((int)aNumber-firstOffset <3) {
 34 #ifdef TOOLS_HATCHER_DEBUG
 35     ::printf("hatcher::check_polyline : ERROR the polygone you give have not enought points!\n\n");
 36 #endif
 37     return false;
 38   }
 39 
 40 
 41   // use to test the polyline and to build the shift vector. A is the first point,
 42   // B second and C the last (in fact, the last-1)!
 43   vec3f AB,AC;
 44   AB.setValue(listPoints[1+firstOffset].getValue()[0]-listPoints[0].getValue()[0],
 45               listPoints[1+firstOffset].getValue()[1]-listPoints[0].getValue()[1],
 46               listPoints[1+firstOffset].getValue()[2]-listPoints[0].getValue()[2]); // Vector A->B
 47 
 48 
 49   fResolveResult = RESOLVE_COLINEAR;
 50   unsigned int test = aNumber;
 51   while ((fResolveResult !=0) && (test>2+firstOffset)) {
 52     test--;
 53     AC.setValue(listPoints[test].getValue()[0]-listPoints[0].getValue()[0],
 54                 listPoints[test].getValue()[1]-listPoints[0].getValue()[1],
 55                 listPoints[test].getValue()[2]-listPoints[0].getValue()[2]);
 56 
 57     // test if AB != AC*i
 58     resolve_system( AB,
 59                    AC,
 60                    vec3f(.0f,.0f,.0f));
 61   }
 62   if (fResolveResult == RESOLVE_COLINEAR) {
 63 #ifdef TOOLS_HATCHER_DEBUG
 64     ::printf("hatcher::check_polyline : ERROR all the point you give are colinear!\n\n");
 65     for (unsigned int a =0;a<aNumber;a++) {
 66       printf(" %f %f %f \n",listPoints[a][0],listPoints[a][1],listPoints[a][2]);  }
 67 #endif
 68     return false;
 69   }
 70 
 71   ///////////////////////////////////////////////////////////////
 72   // test if all points of the polyline are on the same plan
 73   ///////////////////////////////////////////////////////////////
 74 
 75   int falsePoints =0;
 76   for (unsigned int a=2+firstOffset;a<aNumber;a++) {
 77     resolve_system( AB,
 78                    AC,
 79                        vec3f((listPoints[a].getValue()[0]-listPoints[0].getValue()[0]),
 80                                (listPoints[a].getValue()[1]-listPoints[0].getValue()[1]),
 81                                (listPoints[a].getValue()[2]-listPoints[0].getValue()[2])));
 82     if (fResolveResult != 0){
 83       falsePoints++;
 84     }
 85   }
 86 
 87   if (falsePoints !=0) {
 88 #ifdef TOOLS_HATCHER_DEBUG
 89     ::printf("hatcher::check_polyline : ERROR there is %d points on the polyline witch are not on the same plan!\n\n",falsePoints);
 90 #endif
 91     return false;
 92   }
 93 
 94   // test offset
 95     if (! ((fOffset[0] == FLT_MAX) && (fOffset[1] == FLT_MAX) && (fOffset[2] == FLT_MAX))){
 96       resolve_system( AB,
 97                      AC,
 98                      fOffset-listPoints[0]);
 99       if (fResolveResult != 0) {
100 #ifdef TOOLS_HATCHER_DEBUG
101         ::printf("hatcher::check_polyline : ERROR Offset vector has to be on the same plan!\n\n");
102 #endif
103         return false;
104       }
105     }
106     return true;
107 }
108 
109 
110 //////////////////////////////////////////////////////////////////////////////
111 // draw the hatch into the polyline bounding box giving in argument
112 // return false if :
113 //    - All points are not in the same plan
114 //    - There is a precision error on one or more point
115 // Compute a first sequence of hacth, store results, compute a second sequence
116 // and match all results to get the correct strip points
117 //////////////////////////////////////////////////////////////////////////////
118 /** Compute stripWidth
119  * We have to use the conflictNumHatchLineTab, hatchNumber,listHatchStartPoint tables
120  * also the HatchShiftToMacthPoint tab.
121  * and the hatch line just compute below
122  * We try to made a polyline with all points witch are on the current hatch and on the next hacth
123  * (distant of stripwidth form current hatch)
124  * conflictNumHatchLineTab give us something like this for current and next hatch
125  * current   next                                                current    next
126  *    4       4              if we consider that                   ,4        ,4
127  *    0       5              we know the compute hatch             '0        '5
128  *    1       3              lines, we could link                  ,1        ,3
129  *    3       2              some of theses line numbers           '3        '2
130  *    5                        so ->>                              ,5
131  *    2                                                            '2
132  *  And we have to add some points when  HatchShiftToMacthPoint(point) is between current
133  * and next hatch :  We add a point B on intersection of line 0 and 1
134  * current   next                                                current    next
135  *    ,4             ,4
136  *    '0    B(0,1)   '5
137  *    ,1
138  *    '3             ,3
139  *    ,5             '2
140  *    '2
141  *
142  * Now we have to match a way to traverse all of theses lines. We have 3 solutions to go from
143  * one line to another :
144  * - go to the next point if there is one between current and next hatch
145  * - go to the same line but on another hatch
146  * - go to the next tach point
147  * If there is no solution, we have to close the polyline strip and go to another point until
148  * all are compute
149  */
150 
151 /** first, we have to match 7 different cases
152  * 1- all strip hatch are entirely in the polyline
153  * 2- the first strip begin before the polyline and the last end in the polyline
154  * 3- the first strip begin before the polyline and the last ends after
155  * 4- the first strip is entierly in the polyline and the last ends after
156  * 5- the strip has only an intersection with the second hatch sequence (if it has only an intersection
157  *    with the first hatch sequence, it is case 2
158  * 6- the strip has a full intersection
159  * 7- the strip has no intersection !
160  */
161 
162 inline bool hatcher::compute_polyline (vec3f* tabPoints,unsigned int aNumber) {
163   std::vector<vec3f> firstComputePoints;   // copy first Points in
164   std::vector<vec3f> secondComputePoints;   // copy first Points in
165   std::vector<bool> firstComputePointsEnable; // table of already compute points for first hatch
166   std::vector<bool> secondComputePointsEnable;// table of already compute points for second hatch
167   std::vector< std::vector<int> > firstComputeConflictNumHatchLineTab; // copy firstComputeConflictNumHatchLineTab in
168 
169   int firstComputeFirstNumHatch =0;
170   unsigned int firstComputeNumberHatchToDraw =0;
171   float firstHatchShiftToMatchFirstPoint = FLT_MAX; // use in one case when there is no intersection points: to test we have to fill all the polygone
172   float secondHatchShiftToMatchFirstPoint = FLT_MAX; // use in one case when there is no intersection points: to test we have to fill all the polygone
173   //call compute for first set of hatch
174   if ( !compute_single_polyline (tabPoints,aNumber))
175     return false;
176   if (fStripWidth ==0)
177     return true;
178 
179 
180   //save values
181   for (unsigned int a =0;a<fPoints.size();a++){
182     firstComputePoints.push_back(fPoints[a]);
183   }
184 
185   firstComputeConflictNumHatchLineTab.resize(fConflictNumHatchLineTab.size());
186   for (unsigned int a=0;a<fConflictNumHatchLineTab.size();a++){
187     firstComputeConflictNumHatchLineTab[a].clear();
188     for (unsigned int b=0;b<fConflictNumHatchLineTab[a].size();b++){
189       firstComputeConflictNumHatchLineTab[a].push_back(fConflictNumHatchLineTab[a][b]);
190     }
191   }
192   firstComputeFirstNumHatch = fFirstNumHatch;
193   firstComputeNumberHatchToDraw = fNumberHatchToDraw;
194   firstHatchShiftToMatchFirstPoint = fHatchShiftToMatchPointVec[0];
195   //change the offset vector
196   fOffset = fOffset+fShiftVec*fStripWidth;
197 
198   //call compute for second set of hatch
199   if ( !compute_single_polyline (tabPoints,aNumber))
200     return false;
201 
202   //save values
203   for (unsigned int a =0;a<fPoints.size();a++){
204     secondComputePoints.push_back(fPoints[a]);
205   }
206 
207   secondHatchShiftToMatchFirstPoint = fHatchShiftToMatchPointVec[0];
208 
209 
210   // initialize values
211   fPoints.clear();
212   fVertices.clear();
213 
214   int specialCase=1;
215 
216   //first hatch, case 1
217   if ((firstComputeFirstNumHatch == fFirstNumHatch) && (firstComputeNumberHatchToDraw == fNumberHatchToDraw) && (firstComputeNumberHatchToDraw !=0)) {
218     specialCase =1;
219   }
220   //first hatch, case 2
221   else if ((firstComputeFirstNumHatch > fFirstNumHatch) && (firstComputeNumberHatchToDraw < fNumberHatchToDraw) && (firstComputeNumberHatchToDraw !=0)) {
222     //insert a empty element at the beginning
223     firstComputeConflictNumHatchLineTab.insert(firstComputeConflictNumHatchLineTab.begin(), firstComputeConflictNumHatchLineTab.back());
224     firstComputeConflictNumHatchLineTab[0].resize(0);
225     firstComputeFirstNumHatch--;
226     firstComputeNumberHatchToDraw ++;
227     firstComputeConflictNumHatchLineTab[0].clear();
228     specialCase =2;
229 
230   }   //second hatch, case 3
231   else   if (((firstComputeFirstNumHatch > fFirstNumHatch) && (firstComputeNumberHatchToDraw == fNumberHatchToDraw)) && (firstComputeNumberHatchToDraw !=0)) {
232     //insert a empty element at the beginning
233     firstComputeConflictNumHatchLineTab.insert(firstComputeConflictNumHatchLineTab.begin(),firstComputeConflictNumHatchLineTab.back());
234     firstComputeConflictNumHatchLineTab[0].resize(0);
235     firstComputeConflictNumHatchLineTab[0].clear();
236     //insert a empty element at the end
237     fConflictNumHatchLineTab.push_back(firstComputeConflictNumHatchLineTab.back());
238     fConflictNumHatchLineTab.back().resize(0);
239     fConflictNumHatchLineTab.back().clear();
240     firstComputeFirstNumHatch--;
241     firstComputeNumberHatchToDraw ++;
242     specialCase =3;
243   }   //second hatch, case 4
244   else   if (((firstComputeFirstNumHatch == fFirstNumHatch) && (firstComputeNumberHatchToDraw > fNumberHatchToDraw)) && (firstComputeNumberHatchToDraw !=0)) {
245     //insert a empty element at the end
246     fConflictNumHatchLineTab.push_back(firstComputeConflictNumHatchLineTab.back());
247     fConflictNumHatchLineTab.back().resize(0);
248     fConflictNumHatchLineTab.back().clear();
249     specialCase =4;
250 
251   }   //second hatch, case 5
252   else   if ((firstComputeNumberHatchToDraw ==0) && (fNumberHatchToDraw !=0)) {
253     //insert a empty element at the beginning
254     firstComputeConflictNumHatchLineTab.insert(firstComputeConflictNumHatchLineTab.begin(),firstComputeConflictNumHatchLineTab.back());
255     firstComputeConflictNumHatchLineTab[0].resize(0);
256     firstComputeConflictNumHatchLineTab[0].clear();
257     firstComputeNumberHatchToDraw ++;
258     specialCase =5;
259 
260   }   //second hatch, case 6
261   else if (floorf(firstHatchShiftToMatchFirstPoint) != floorf(secondHatchShiftToMatchFirstPoint)) {
262     specialCase =6;
263 
264     //fill all the polygone !
265     fVertices.push_back(aNumber);
266     for (unsigned int a =0;a<aNumber;a++){
267       fPoints.push_back(tabPoints[a]);
268     }
269     return true;
270   }
271   else if (floorf(firstHatchShiftToMatchFirstPoint) == floorf(secondHatchShiftToMatchFirstPoint)) {
272     specialCase =7;
273     return true;
274   } else {
275 #ifdef TOOLS_HATCHER_DEBUG
276     ::printf("hatcher::drawStripPolyline : WARNING there is a case witch was not done in the algotithm...possibly some drawing problems.\n\n");
277 #endif
278 
279   }
280 
281 
282   bool result;
283   bool find; // temp variable
284   int firstHatchComputePoint = 0; //first point number
285   int secondHatchComputePoint = 0; //first point number
286   unsigned int lineNumber;
287   unsigned int firstPointTabInd =0;
288   unsigned int secondPointTabInd=0;
289   unsigned int currentHatch; // 0 is first, 1 is second, 2 is one or other !!
290   unsigned int solution; //default for beginning
291   unsigned int indTmp;
292   unsigned int oldSolution;
293   for (unsigned int indHatch =0;indHatch<firstComputeNumberHatchToDraw;indHatch++) {
294 
295 
296     currentHatch =0; // 0 is first, 1 is second
297     solution =99; //default for beginning
298     indTmp = 0;
299     lineNumber = 0;
300     secondComputePointsEnable.clear();
301     firstComputePointsEnable.clear();
302     for (unsigned int a=0;a<firstComputeConflictNumHatchLineTab[indHatch].size();a++){
303       firstComputePointsEnable.push_back(false);}
304     for (unsigned int a=0;a<fConflictNumHatchLineTab[indHatch].size();a++){
305       secondComputePointsEnable.push_back(false);}
306 
307     if ((indHatch == 0) && ((specialCase ==2) || (specialCase ==3) || (specialCase ==5))) {
308       for (unsigned int a=0;a<firstComputeConflictNumHatchLineTab[indHatch].size();a++){
309         firstComputePointsEnable[a] = true;
310       }
311     }
312     if ((indHatch == (firstComputeNumberHatchToDraw-1)) && ((specialCase ==3) || (specialCase ==4))) {
313       for (unsigned int a=0;a<fConflictNumHatchLineTab[indHatch].size();a++){
314         secondComputePointsEnable[a] = true;
315       }
316     }
317 
318     result = false;
319     while (result == false) {
320 
321 
322       //find a uncompute point for this set of hatch
323       result =true;
324       unsigned int b=0;
325       while ((result == true) && (b<firstComputeConflictNumHatchLineTab[indHatch].size())) {
326         if (firstComputePointsEnable[b] == false) {
327           result =false;
328           firstHatchComputePoint = b;
329           lineNumber = firstComputeConflictNumHatchLineTab[indHatch][b];
330           fPoints.push_back(firstComputePoints[b+firstPointTabInd]);
331           fVertices.push_back(1);
332           firstComputePointsEnable[b] = true;
333           currentHatch = 0;
334         }
335         b++;
336       }
337       if (result ==true) {
338         //find a uncompute point for this set of hatch
339 
340         while ((result == true) && (b<fConflictNumHatchLineTab[indHatch].size())) {
341           if (secondComputePointsEnable[b] == false) {
342             result =false;
343             secondHatchComputePoint = b;
344             lineNumber = fConflictNumHatchLineTab[indHatch][b];
345             fPoints.push_back(secondComputePoints[b+secondPointTabInd]);
346             fVertices.push_back(1);
347             secondComputePointsEnable[b] = true;
348             currentHatch = 1;
349           }
350           b++;
351         }
352       }
353       if (result == true) {
354       }
355         solution =99; // to enter in the while
356         while (solution !=0) {
357           oldSolution = solution;
358           solution =0; //default
359           // get the line number for this point
360           /** Now we have to match a way to traverse all of theses lines. We have 3 solutions to go from
361            * one line to another :
362            * - go to the next point if there is one between current and next hatch
363            * - go to the same line but on another hatch
364            * - go to the next hatch point
365            */
366           if (currentHatch != 1) {
367 
368             if (oldSolution != 3) {                   // could go to first solution
369               int index =0;
370               if ((firstHatchComputePoint % 2 == 0) && (firstComputePointsEnable[firstHatchComputePoint+1] == false))   index =1;
371               else if ((firstHatchComputePoint % 2 != 0) && (firstComputePointsEnable[firstHatchComputePoint-1] == false))  index = -1;
372               if (index !=0) {
373                 solution = 1;
374                 oldSolution = 0;
375                 firstHatchComputePoint = firstHatchComputePoint+index;
376                 fPoints.push_back(firstComputePoints[firstHatchComputePoint+firstPointTabInd]);
377                 fVertices.back() ++;
378                 firstComputePointsEnable[firstHatchComputePoint] = true;
379                 lineNumber = firstComputeConflictNumHatchLineTab[indHatch][firstHatchComputePoint];
380               }
381             }
382             if (solution == 0) {                  // could go to second solution
383               indTmp = 0;
384               while ((solution == 0) && (indTmp < fConflictNumHatchLineTab[indHatch].size())) {
385                 if ((fConflictNumHatchLineTab[indHatch][indTmp] == (int)lineNumber) && (secondComputePointsEnable[indTmp] == false)) {
386                   solution =2;
387                   oldSolution = 0;
388                   fPoints.push_back(secondComputePoints[indTmp+secondPointTabInd]);
389                   fVertices.back() ++;
390                   secondComputePointsEnable[indTmp] = true;
391                   lineNumber = fConflictNumHatchLineTab[indHatch][indTmp];
392                   secondHatchComputePoint = indTmp;
393                   currentHatch =1;
394                 }
395                 indTmp ++;
396               }
397             }
398             if (solution == 0) {                    // could go to first solution
399               indTmp = 0;
400               while ((solution == 0) && (indTmp < aNumber)) {
401 
402                 if ((fHatchShiftToMatchPointVec[indTmp] > ((float)firstComputeFirstNumHatch+(float)indHatch-fStripWidth))
403                     && (fHatchShiftToMatchPointVec[indTmp] < ((float)firstComputeFirstNumHatch+(float)indHatch))
404                     && ((indTmp == lineNumber) || (indTmp==lineNumber+1) || ((lineNumber == (aNumber-1)) && (indTmp ==0)))) {
405                   find = false;
406                   unsigned a =0;
407                   while ((a<fVertices.back()) && (find == false)) {
408                     if ((tabPoints[indTmp][0] == fPoints[a][0]) && (tabPoints[indTmp][1] == fPoints[a][1]) && (tabPoints[indTmp][2] == fPoints[a][2])) find = true;
409                     a++;
410                   }
411                   if (find == false){
412                     solution = 3;
413                     oldSolution = 0;
414                     currentHatch =2;
415                     fPoints.push_back(tabPoints[indTmp]);
416                     fVertices.back() ++;
417                     if (lineNumber == indTmp) {
418                       if (indTmp >0)  lineNumber =  indTmp-1;
419                       else lineNumber = aNumber-1;
420                     }
421                     else {
422                       if (indTmp < aNumber-1)  lineNumber =  indTmp;
423                       else lineNumber = 0;
424                     }
425                   }
426                 }
427                 indTmp++;
428               }
429             }
430           } // end of current hatch
431 
432             //test of second hatch if currentHatch is second
433           if ((oldSolution != 0) && (solution !=2) && (currentHatch !=0)) {
434 
435             if (oldSolution != 3){                   // could go to first solution
436               int index =0;
437               if ((secondHatchComputePoint % 2 == 0) && (secondComputePointsEnable[secondHatchComputePoint+1] == false))   index =1;
438               else if ((secondHatchComputePoint % 2 != 0) && (secondComputePointsEnable[secondHatchComputePoint-1] == false))  index = -1;
439               if (index !=0){
440                 solution = 1;
441                 secondHatchComputePoint = secondHatchComputePoint+index;
442                 fPoints.push_back(secondComputePoints[secondHatchComputePoint+secondPointTabInd]);
443                 fVertices.back() ++;
444                 secondComputePointsEnable[secondHatchComputePoint] = true;
445                 lineNumber = fConflictNumHatchLineTab[indHatch][secondHatchComputePoint];
446               }
447             }
448             if (solution == 0) {                  // could go to second solution
449               indTmp = 0;
450               while ((solution == 0) && (indTmp < firstComputeConflictNumHatchLineTab[indHatch].size())) {
451                 if ((firstComputeConflictNumHatchLineTab[indHatch][indTmp] == (int)lineNumber) && (firstComputePointsEnable[indTmp] == false)) {
452                   solution =2;
453                   fPoints.push_back(firstComputePoints[indTmp+firstPointTabInd]);
454                   fVertices.back() ++;
455                   firstComputePointsEnable[indTmp] = true;
456                   lineNumber = firstComputeConflictNumHatchLineTab[indHatch][indTmp];
457                   firstHatchComputePoint = indTmp;
458                   currentHatch =0;
459                 }
460                 indTmp ++;
461               }
462             }
463             if (solution == 0) {                    // could go to first solution
464               indTmp = 0;
465               while ((solution == 0) && (indTmp < aNumber)) {
466 
467                 if ((fHatchShiftToMatchPointVec[indTmp] > ((float)fFirstNumHatch+(float)indHatch-fStripWidth))
468                     && (fHatchShiftToMatchPointVec[indTmp] < ((float)fFirstNumHatch+(float)indHatch))
469                     && ((indTmp == lineNumber) || (indTmp==lineNumber+1) || ((lineNumber == (aNumber-1)) && (indTmp ==0)))) {
470                   find = false;
471                   unsigned a =0;
472                   while ((a<fVertices.back()) && (find == false)) {
473                     if ((tabPoints[indTmp][0] == fPoints[a][0]) && (tabPoints[indTmp][1] == fPoints[a][1]) && (tabPoints[indTmp][2] == fPoints[a][2])) find = true;
474                     a++;
475                   }
476                   if (find == false){
477                     currentHatch =2;
478                     solution = 3;
479                     fPoints.push_back(tabPoints[indTmp]);
480                     fVertices.back() ++;
481                     if (lineNumber == indTmp) {
482                       if (indTmp >0)  lineNumber =  indTmp-1;
483                       else lineNumber = aNumber-1;
484                     }
485                     else {
486                       if (indTmp < aNumber-1)  lineNumber =  indTmp;
487                       else lineNumber = 0;
488                     }
489                   }
490                 }
491                 indTmp++;
492               }
493             }
494           } // end of current hatch
495           if (solution == 0) {
496             // the end for this polyline
497             // close polyline
498             fPoints.push_back(fPoints[fPoints.size()-fVertices.back()]);
499             fVertices.back() ++;
500             result =true;
501           }
502         } // while solution !=0
503         //      } // if result
504     } // while result
505     for (unsigned int a =0;a<fVertices.size();a++){
506 #ifdef TOOLS_HATCHER_DEBUG
507       if (fVertices[a] <4) ::printf("hatcher::drawStripPolyline : WARNING A strip polyline has been compute with less than 3 points, it could be an error in the algorithm or a special case.\n\n");
508 #endif
509     }
510 
511     firstPointTabInd += firstComputeConflictNumHatchLineTab[indHatch].size();
512     secondPointTabInd += fConflictNumHatchLineTab[indHatch].size();
513   } //end for
514   return true;
515 }
516 
517 
518 
519 
520 //////////////////////////////////////////////////////////////////////////////
521 // draw the hatch into the polyline bounding box giving in argument
522 // return false if :
523 //    - All points are not in the same plan
524 //    - There is a precision error on one or more point
525 //////////////////////////////////////////////////////////////////////////////
526 
527 inline bool hatcher::compute_single_polyline (vec3f* tabPoints,unsigned int aNumber) {
528   std::vector<vec3f> listNormalVec;
529   int numberOfPolylinePoints =0;
530   fPoints.resize(0);
531   fPoints.clear();
532   int precisionError =0;
533   unsigned int firstOffset =0;
534   fFirstNumHatch =0;
535   fNumberHatchToDraw =0;
536   fVertices.resize(0);
537   fVertices.clear();
538 
539   if ( tabPoints[0].equals(tabPoints[1].getValue(),FLT_EPSILON*FLT_EPSILON*10)) {
540     firstOffset =1;  }
541 
542   vec3f* listPoints = new vec3f[aNumber+1-firstOffset];
543 
544   for (unsigned int i=0;i<aNumber;i++){
545     if ((i==0) || (listPoints[i-1] !=tabPoints[i+firstOffset])) {
546       listPoints[numberOfPolylinePoints] = tabPoints[i+firstOffset];
547       numberOfPolylinePoints++;
548     }
549   }
550 
551   // add the first point on last position to close the line
552   if ( ! listPoints[0].equals(listPoints[numberOfPolylinePoints-1].getValue(),FLT_EPSILON*FLT_EPSILON*10)) {
553     listPoints[numberOfPolylinePoints]=listPoints[0];
554     numberOfPolylinePoints ++;
555   }
556 
557   // use to test the polyline and to build the shift vector. A is the first point,
558   // B second and C the last (in fact, the last-1)!
559   vec3f AB,AC;
560   AB.setValue(listPoints[1].getValue()[0]-listPoints[0].getValue()[0],
561               listPoints[1].getValue()[1]-listPoints[0].getValue()[1],
562               listPoints[1].getValue()[2]-listPoints[0].getValue()[2]); // Vector A->B
563 
564   fResolveResult = RESOLVE_COLINEAR;
565   unsigned int test = numberOfPolylinePoints-1;
566   while ((fResolveResult !=0) && (test>1)) {
567     test--;
568     AC.setValue(listPoints[test].getValue()[0]-listPoints[0].getValue()[0],
569                 listPoints[test].getValue()[1]-listPoints[0].getValue()[1],
570                 listPoints[test].getValue()[2]-listPoints[0].getValue()[2]);
571 
572     // test if AB != AC*i
573     resolve_system( AB,
574                    AC,
575                    vec3f(.0f,.0f,.0f));
576   }
577   if (fResolveResult == RESOLVE_COLINEAR) {
578 #ifdef TOOLS_HATCHER_DEBUG
579     ::printf("hatcher::drawPolyline : ERROR all the point you give are colinear!\n\n");
580     for (unsigned int a =0;a<aNumber;a++) {
581       printf(" %f %f %f \n",listPoints[a][0],listPoints[a][1],listPoints[a][2]);  }
582 #endif
583     delete [] listPoints;
584     return false;
585   }
586 
587   ///////////////////////////////////////////////////////////////
588   // creation of the dirVec. It is done with the dirAngle field
589   // The angle is the one between the first line (point 1-point0)
590   // and the dirVec, on the plan delimited by polyline
591   // Given in the direct axis ((point1-point0),(lastPoint-point0),normalPlanVec)
592   // Normal plane Vector = AB x AC
593   ///////////////////////////////////////////////////////////////
594   if (fFirstPolyline) {
595 
596     fFirstPolyline = false;
597 
598     fNormal.setValue(AB[1]*AC[2]-AB[2]*AC[1],
599                                AB[2]*AC[0]-AB[0]*AC[2],
600                                AB[0]*AC[1]-AB[1]*AC[0]);
601 
602 
603     // ABPerp Vector = normal x AB
604     vec3f ABPerpVector;
605     ABPerpVector.setValue(fNormal[1]*AB[2]-fNormal[2]*AB[1],
606                           fNormal[2]*AB[0]-fNormal[0]*AB[2],
607                           fNormal[0]*AB[1]-fNormal[1]*AB[0]);
608 
609     float normAB =(float)std::sqrt(std::pow(AB[0],2)+
610                         std::pow(AB[1],2)+
611                         std::pow(AB[2],2));
612     float normABPerpVector =(float)std::sqrt(std::pow(ABPerpVector[0],2)+
613                         std::pow(ABPerpVector[1],2)+
614                         std::pow(ABPerpVector[2],2));
615 
616     float j = std::tan(fDirAngle)*normAB/normABPerpVector;
617 
618     if (normABPerpVector == 0){  // never done (should be test before)
619 #ifdef TOOLS_HATCHER_DEBUG
620       ::printf("hatcher::drawPolyline : ERROR Impossible to compute the dir vector for hatch. Normal for this plan is null (normal for : point[0],point[1],lastPoint) point[0], point[1], last point are probably aligned\n\n");
621 #endif
622       delete [] listPoints;
623       return false;
624     }
625 
626     fDirVec = AB +(float)j*ABPerpVector;
627     // normalize vector to unit on X or on Y
628     if (fDirVec.getValue()[0] ==0){
629       fDirVec[0] = fPrecisionFactor; // to get rid of somes errors
630       fDirVec = fDirVec/fDirVec.getValue()[1]; // normalize on Y because X will be a big value
631     } else {
632       fDirVec = fDirVec/fDirVec.getValue()[0];
633     }
634 
635     ///////////////////////////////////////////////////////////////
636     // creation of the shiftVec thanks to the shift field
637     ///////////////////////////////////////////////////////////////
638 
639     vec3f dirShiftVector;
640     dirShiftVector.setValue(fNormal[1]*fDirVec.getValue()[2]-fNormal[2]*fDirVec.getValue()[1],
641                             fNormal[2]*fDirVec.getValue()[0]-fNormal[0]*fDirVec.getValue()[2],
642                             fNormal[0]*fDirVec.getValue()[1]-fNormal[1]*fDirVec.getValue()[0]);
643 
644     // normalize vector to match the shift size
645     float param = 1.0f;
646     param = (float)std::sqrt((std::pow(fShift,2))/(
647                                         std::pow(dirShiftVector[0],2)+
648                                         std::pow(dirShiftVector[1],2)+
649                                         std::pow(dirShiftVector[2],2)));
650     fShiftVec = dirShiftVector*param;
651 
652     // compute offset only if it was not given
653     if ((fOffset[0] == FLT_MAX) && (fOffset[1] == FLT_MAX) && (fOffset[2] == FLT_MAX)){
654       fOffset = listPoints[0]+fShiftVec*fOffsetValue;
655     }
656   }
657 
658 
659   /////////////////////////////////////////////
660   // START to compute
661   // We compute each line one by one to know witch hatch will be draw thrue this line
662   // we try to know the result of
663   // (origin_point_of_hatch)+i*(directionVector)+j*(shiftVector) = each_point_of_polyline
664   // We will be interest only on j factor for the moment. This factor represent the offset
665   // between the Origin point of the hatch and the compute point of the polyline
666   // We put results in a float table
667   //
668   // We also have to memorize the min and max number of the hatch to be draw
669   // Point                  0 1 2 3 4 5 6 ...n 1
670   // hatchShiftToMatchPoint   5 7 2 6 7 8 5 ...2 5
671   // min = 1 max = 8   -> 8 hatch to draw
672   ////////////////////////////////////////////
673 
674   fHatchShiftToMatchPointVec.resize(numberOfPolylinePoints+1);
675   float minShiftHatch =FLT_MAX;
676   float maxShiftHatch =-FLT_MAX;
677   vec2f res;
678 
679   for (int a=0;a<numberOfPolylinePoints;a++) {
680     res = resolve_system(fDirVec.getValue(),
681                         fShiftVec,
682                         listPoints[a]-fOffset);
683     // test result
684     if (fResolveResult ==0 ) {
685          fHatchShiftToMatchPointVec[a] = res[1];
686          if (res[1]>maxShiftHatch) {
687            maxShiftHatch = res[1];
688          }
689          if (res[1]<minShiftHatch) {
690            minShiftHatch = res[1];
691          }
692     }
693     else {  // never done (should be test before)
694 #ifdef TOOLS_HATCHER_DEBUG
695       ::printf("hatcher::drawPolyline : ERROR one or more of your polyline points are not on the same plan ! Testing point %d/%d error:%d\n\n",a,numberOfPolylinePoints,fResolveResult);
696 #endif
697       delete [] listPoints;
698       return false;
699     }
700   }
701   // for the first point to close the polyline
702   fHatchShiftToMatchPointVec[numberOfPolylinePoints] = fHatchShiftToMatchPointVec[0];
703   fFirstNumHatch = (int)(ceilf(minShiftHatch));
704   fNumberHatchToDraw = (int)(floorf(maxShiftHatch)-fFirstNumHatch+1);
705   if ((int)(floorf(maxShiftHatch)-fFirstNumHatch+1) <0) fNumberHatchToDraw =0;
706 
707   int moreNumberHatchToDraw = fNumberHatchToDraw+1;
708   std::vector<vec3f> listHatchStartPoint;
709   std::vector<vec3f> listHatchEndPoint;
710   std::vector<int> numberOfStartEndPointsVec;
711 
712   fConflictNumHatchLineTab.resize(moreNumberHatchToDraw);
713 
714   // initialize tab
715     for (int a=0;a<moreNumberHatchToDraw;a++) {
716       numberOfStartEndPointsVec.push_back(0);
717       listHatchStartPoint.push_back(vec3f(.0f,.0f,.0f));
718       listHatchEndPoint.push_back(vec3f(.0f,.0f,.0f));
719       fConflictNumHatchLineTab[a].clear();
720     }
721 
722   /////////////////////////////////////////////
723   // Compute the normalize shift vector for all lines
724   // the normal Vector for point 3 to 4 will be listNormalvec[2]
725   /////////////////////////////////////////////
726 
727   for (int a=0;a<numberOfPolylinePoints-1;a++) {
728     res = resolve_system(fDirVec.getValue(),
729                         vec3f(listPoints[a].getValue()[0]-listPoints[a+1].getValue()[0],
730                                 listPoints[a].getValue()[1]-listPoints[a+1].getValue()[1],
731                                 listPoints[a].getValue()[2]-listPoints[a+1].getValue()[2]),
732                         -fShiftVec);
733     if (fResolveResult ==0 ) {
734       listNormalVec.push_back(vec3f(res[1]*(listPoints[a+1].getValue()[0]-listPoints[a].getValue()[0]),
735                                        res[1]*(listPoints[a+1].getValue()[1]-listPoints[a].getValue()[1]),
736                                        res[1]*(listPoints[a+1].getValue()[2]-listPoints[a].getValue()[2])
737                                        ));
738     }
739     else  if (fResolveResult == RESOLVE_Z_ERROR ) {  // never done (should be test before)
740 #ifdef TOOLS_HATCHER_DEBUG
741       ::printf("hatcher::drawPolyline : ERROR one or more of your polyline points are not on the same plan !\n\n");
742 #endif
743       delete [] listPoints;
744       return false;
745     }
746     else{
747       listNormalVec.push_back(vec3f(FLT_MAX,FLT_MAX,FLT_MAX));
748       //      listNormalVec.append(new vec3f(FLT_MAX,FLT_MAX,FLT_MAX));
749     }
750  }
751 
752   /////////////////////////////////////////////
753   // Compute the hatchShiftToMatchPointVec table to try to get the start
754   // and end point of each hatch
755   // if there is more than one start/end point, we will resolve it later. For the moment,
756   // we put confict points into a table
757   // HatchNumber        1     2     3      4      5      6      7     8    9
758   // listHatchStartPoint  1,0,0  1,1,0  0,0,1  0,1,0  1,1,0  0,2,0  1,1,4
759   // listHatchEndPoint    ..............
760   // conflictNumHatchLineTab 5 6 7
761   // line Number is 0 for (point[0]->point[1])
762   // We put each line number into the conflict table to be sure to get all the lines
763   //  in conflict. When we will thest the value of the conflicy table, it should
764   // be greater than 2 to have a conflict
765   /////////////////////////////////////////////
766 
767   vec3f newPoint;
768   int minHatch;
769   int maxHatch;
770   int hatchIndice =0;
771 
772   for (int indPolyline=0;indPolyline<numberOfPolylinePoints-1;indPolyline++) {
773     minHatch = (int)(ceilf(fHatchShiftToMatchPointVec[indPolyline]));
774     maxHatch = (int)(floorf(fHatchShiftToMatchPointVec[indPolyline+1]));
775 
776     if (fHatchShiftToMatchPointVec[indPolyline+1] <fHatchShiftToMatchPointVec[indPolyline]) {
777       minHatch =(int)(ceilf(fHatchShiftToMatchPointVec[indPolyline+1]));
778       maxHatch = (int)(floorf(fHatchShiftToMatchPointVec[indPolyline]));
779     }
780     for (int b=minHatch;b<=maxHatch;b++) {  // for all number of hatch fund
781       // compute new point
782       hatchIndice = b-fFirstNumHatch;
783 
784       newPoint.setValue(listPoints[indPolyline].getValue()[0]+
785                         listNormalVec[indPolyline][0]*(b-fHatchShiftToMatchPointVec[indPolyline]),
786                         listPoints[indPolyline].getValue()[1]+
787                         listNormalVec[indPolyline][1]*(b-fHatchShiftToMatchPointVec[indPolyline]),
788                         listPoints[indPolyline].getValue()[2]+
789                         listNormalVec[indPolyline][2]*(b-fHatchShiftToMatchPointVec[indPolyline]));
790 
791       if (numberOfStartEndPointsVec[hatchIndice] == 0) {// it is the first point
792         //compute point and save it
793         // the start point will be :
794         // Point_of_the_line + normalVec *
795         //(number_of_hatch_to_compute - number_of_hatch_corresponding_to_first_point_of_line)
796         //
797         if ( (listNormalVec[indPolyline][0] != FLT_MAX)
798             && (listNormalVec[indPolyline][1] != FLT_MAX)
799             && (listNormalVec[indPolyline][2] != FLT_MAX)) {
800           listHatchStartPoint[hatchIndice] = vec3f(newPoint);
801            fConflictNumHatchLineTab[hatchIndice].push_back(indPolyline);
802            numberOfStartEndPointsVec[hatchIndice]++;
803          }
804       } else if (numberOfStartEndPointsVec[hatchIndice] == 1) { // it is the second point
805         //compute point and save it (same point as previous )
806         // the start point will be :
807         // Point_of_the_line + normalVec *
808         //  (number_of_hatch_to_compute - number_of_hatch_corresponding_to_first_point_of_line)
809         // store only if newPoint is != start
810         if ((listNormalVec[indPolyline][0] != FLT_MAX)
811             && (listNormalVec[indPolyline][1] != FLT_MAX)
812             && (listNormalVec[indPolyline][2] != FLT_MAX)) {
813           listHatchEndPoint[hatchIndice] = vec3f(newPoint);
814           fConflictNumHatchLineTab[hatchIndice].push_back(indPolyline);
815           numberOfStartEndPointsVec[hatchIndice]++;
816         }
817       } else { // there is a conflict, we don't compute anything except for conflicts on points
818         // witch are already compute
819         // case of the hatch will be draw on a point of the polyline,
820         // so it match 2 lines + another
821         fConflictNumHatchLineTab[hatchIndice].push_back(indPolyline); // put the line number in conflict table
822       }
823     }
824   }
825 
826   /////////////////////////////////////////////
827   // Compute the numHatchLine tab and draw correct points
828   /////////////////////////////////////////////
829   std::vector<float> listCoefDirHatch(fNumberHatchToDraw);
830   std::vector<vec3f> listConflictPoints(numberOfPolylinePoints);
831 
832   vec3f ABVec,tempVec;
833   int valid =false;
834   bool drawEnabled = false; // true : we could draw second point, false we wait for the first
835   float temp=0;
836   int tempInt =0;
837   float nextPointConflictHatchNumber = -FLT_MAX;
838   float currentPointConflictHatchNumber = -FLT_MAX;
839   std::vector<unsigned int> orderConflictLineNumber;
840 
841   for (unsigned int hatchNumber =0;hatchNumber<fNumberHatchToDraw;hatchNumber++) {
842     if ( fConflictNumHatchLineTab[hatchNumber].size() <= 2) {
843       if (!listHatchStartPoint[hatchNumber].equals(listHatchEndPoint[hatchNumber],FLT_EPSILON*FLT_EPSILON*10)) {
844         fPoints.push_back(listHatchStartPoint[hatchNumber]);
845         fPoints.push_back(listHatchEndPoint[hatchNumber]);
846         fVertices.push_back(2);
847       }
848     } else { // there is a conflict
849       // We read the conflict table and compute all the conflict lines
850       // conflict is on hatch number hatchNumber+ firstNumHatch
851       // Compute the equation on the conflict line (called ABVec ):
852       // i*dirVec - j*ABVec = A-(offset + shiftVec * numberHatchToDraw)
853       // and store the i parameter
854       // then we
855 
856       listConflictPoints.clear();
857       listCoefDirHatch.clear();
858       std::vector <unsigned int> toRemove;
859       for (unsigned int conflictLineNumber=0;conflictLineNumber<fConflictNumHatchLineTab[hatchNumber].size();conflictLineNumber++ )
860         {
861 
862           ABVec.setValue(listPoints[fConflictNumHatchLineTab[hatchNumber][conflictLineNumber]+1].getValue()[0]-listPoints[fConflictNumHatchLineTab[hatchNumber][conflictLineNumber]].getValue()[0],
863                          listPoints[fConflictNumHatchLineTab[hatchNumber][conflictLineNumber]+1].getValue()[1]-listPoints[fConflictNumHatchLineTab[hatchNumber][conflictLineNumber]].getValue()[1],
864                          listPoints[fConflictNumHatchLineTab[hatchNumber][conflictLineNumber]+1].getValue()[2]-listPoints[fConflictNumHatchLineTab[hatchNumber][conflictLineNumber]].getValue()[2]);
865 
866           res = resolve_system(fDirVec.getValue(),
867                               ABVec,
868                               vec3f(listPoints[fConflictNumHatchLineTab[hatchNumber][conflictLineNumber]].getValue()[0]-fOffset[0]-((float)hatchNumber+(float)fFirstNumHatch)*fShiftVec[0],
869                                       listPoints[fConflictNumHatchLineTab[hatchNumber][conflictLineNumber]].getValue()[1]-fOffset[1]-((float)hatchNumber+(float)fFirstNumHatch)*fShiftVec[1],
870                                       listPoints[fConflictNumHatchLineTab[hatchNumber][conflictLineNumber]].getValue()[2]-fOffset[2]-((float)hatchNumber+(float)fFirstNumHatch)*fShiftVec[2]));
871 
872           if (fResolveResult ==0 ) {
873             // we store results
874             listCoefDirHatch.push_back(2);
875             listCoefDirHatch.pop_back();
876             listCoefDirHatch.push_back(res[0]);
877             res[1] = -res[1];
878             listConflictPoints.push_back(vec3f(listPoints[fConflictNumHatchLineTab[hatchNumber][conflictLineNumber]]+ABVec*res[1]));
879           }
880           else if (fResolveResult != RESOLVE_COLINEAR){
881 #ifdef TOOLS_HATCHER_DEBUG
882             printf("hatcher : Precision error during compute on hatch number%d\n\n",hatchNumber);
883 #endif
884             precisionError++;
885           } else {
886             toRemove.push_back(conflictLineNumber);
887           }
888         }
889 
890       if (toRemove.size()) {
891         for (unsigned int conflictLineNumber=0;conflictLineNumber<fConflictNumHatchLineTab[hatchNumber].size();conflictLineNumber++ ) {
892         }
893         // remove potential colinear problems
894         for (unsigned int aa=0;aa<toRemove.size();aa++) {
895           unsigned int ind = 0;
896           for (std::vector<int>::iterator it = fConflictNumHatchLineTab[hatchNumber].begin();it !=fConflictNumHatchLineTab[hatchNumber].end();it++) {
897             if (ind == toRemove[aa]) {
898               fConflictNumHatchLineTab[hatchNumber].erase(it);
899               break;
900             }
901             ind++;
902           }
903         }
904         for (unsigned int conflictLineNumber=0;conflictLineNumber<fConflictNumHatchLineTab[hatchNumber].size();conflictLineNumber++ ) {
905         }
906       }
907       if (listCoefDirHatch.size() != 0) { // all points are resolve_system errors (RESOLVE_COLINEAR or RESOLVE_Z_ERROR
908 
909         // now, we have to sort all coef dir from minus to max
910         // and at the same time, reorder the conflict ponts and the conflict line number
911         // this algorithm is not optimum...
912         valid = false;
913         while (valid ==false )
914           {
915             valid = true;
916             for (unsigned int sort =0;sort< listCoefDirHatch.size()-1;sort++)
917               {
918                 if (listCoefDirHatch[sort]>listCoefDirHatch[sort+1]) {
919 
920                   temp = listCoefDirHatch[sort];
921                   listCoefDirHatch[sort] = listCoefDirHatch[sort+1];
922                   listCoefDirHatch[sort+1] =temp;
923                   tempVec = listConflictPoints[sort];
924                   listConflictPoints[sort] = listConflictPoints[sort+1];
925                   listConflictPoints[sort+1] = tempVec;
926                   tempInt = fConflictNumHatchLineTab[hatchNumber][sort];
927                   fConflictNumHatchLineTab[hatchNumber][sort] = fConflictNumHatchLineTab[hatchNumber][sort+1];
928                   fConflictNumHatchLineTab[hatchNumber][sort+1] = tempInt;
929                   valid= false;
930                 }
931               }
932           }
933 
934         // once dir coef have been sort, we could draw lines !!
935         //witch line had made a conflict ??? conflictNumHatchLineTab[a]
936         unsigned int conflictNumber =0;
937         orderConflictLineNumber.clear();
938 
939         drawEnabled = false;
940         while (conflictNumber < fConflictNumHatchLineTab[hatchNumber].size()) { // while
941           if (conflictNumber+1 == fConflictNumHatchLineTab[hatchNumber].size()) {
942             if(drawEnabled) {
943               drawEnabled =  false;
944               fPoints.push_back(listConflictPoints[conflictNumber].getValue());
945               orderConflictLineNumber.push_back(fConflictNumHatchLineTab[hatchNumber][conflictNumber]);
946             }
947           }
948           else {
949             // if the conflict point == next conflict point : that is a end/begin line conflict
950             // else, this is not a big problem, we just have to invert the drawEnabled
951             // (if we were drawing, we have to finish a line, else, we have to begin a line
952             if ( !(listConflictPoints[conflictNumber].equals(listConflictPoints[conflictNumber+1],FLT_EPSILON*FLT_EPSILON*10))) {
953               // special case of nextPointline=nextConflict point : hatch//line
954               unsigned int follow=conflictNumber+1;
955               bool overContour = false;
956               while ((follow <fConflictNumHatchLineTab[hatchNumber].size()) &&
957                      (listConflictPoints[conflictNumber].equals(listConflictPoints[follow],FLT_EPSILON*FLT_EPSILON*10))) {
958                 follow++;
959               }
960               //test if next point is on the contour
961               if(follow < fConflictNumHatchLineTab[hatchNumber].size()) {
962                 if ((listConflictPoints[follow].equals(listPoints[fConflictNumHatchLineTab[hatchNumber][follow]].getValue(),FLT_EPSILON*FLT_EPSILON*10))) {
963                   if ((fConflictNumHatchLineTab[hatchNumber][follow] != 0) &&
964                       (fConflictNumHatchLineTab[hatchNumber][follow] != numberOfPolylinePoints-1)) {
965                     if ((listConflictPoints[conflictNumber].equals(listPoints[fConflictNumHatchLineTab[hatchNumber][follow]-1].getValue(),FLT_EPSILON*FLT_EPSILON*10)) ||
966                         (listConflictPoints[conflictNumber].equals(listPoints[fConflictNumHatchLineTab[hatchNumber][follow]+1].getValue(),FLT_EPSILON*FLT_EPSILON*10))) {
967                       overContour = true;
968                     }
969                   }
970                 }
971               }
972               int previous=conflictNumber-1;
973               while ((previous >=0) &&
974                      (listConflictPoints[conflictNumber].equals(listConflictPoints[previous],FLT_EPSILON*FLT_EPSILON*10))) {
975                 previous--;
976               }
977               //test if next point is on the contour
978               if(previous >= 0) {
979                 if ((listConflictPoints[conflictNumber].equals(listPoints[fConflictNumHatchLineTab[hatchNumber][conflictNumber]].getValue(),FLT_EPSILON*FLT_EPSILON*10))) {
980                   if ((listConflictPoints[previous].equals(listPoints[fConflictNumHatchLineTab[hatchNumber][conflictNumber]-1].getValue(),FLT_EPSILON*FLT_EPSILON*10)) ||
981                       (listConflictPoints[previous].equals(listPoints[fConflictNumHatchLineTab[hatchNumber][conflictNumber]+1].getValue(),FLT_EPSILON*FLT_EPSILON*10))) {
982                     overContour = true;
983                   }
984                 }
985               }
986               if (!overContour) { // we are not on a contour, we can draw
987                 fPoints.push_back(listConflictPoints[conflictNumber].getValue());
988                 orderConflictLineNumber.push_back(fConflictNumHatchLineTab[hatchNumber][conflictNumber]);
989                 drawEnabled = drawEnabled?false:true;
990                 if (drawEnabled) {
991                   fVertices.push_back(2);
992                 }
993               } else { // else we have to stop drawing
994                 if (drawEnabled) {
995                   fPoints.push_back(listConflictPoints[conflictNumber].getValue());
996                   orderConflictLineNumber.push_back(fConflictNumHatchLineTab[hatchNumber][conflictNumber]);
997                   drawEnabled = false;
998                 }
999               }
1000             }
1001             else { // next point == current
1002               bool currentPointCrossLine = false;
1003               bool nextPointCrossLine = false;
1004               // if the conflict is on a line point, we have to look the hatch number
1005               // of the previous and next point to see if the hatch had to be draw or not
1006 
1007               // test if conflictPoint == first line point
1008               if (listConflictPoints[conflictNumber].equals(listPoints[fConflictNumHatchLineTab[hatchNumber][conflictNumber]].getValue(),FLT_EPSILON*FLT_EPSILON*10)) {
1009                 // we look second point hatchNumber
1010                 currentPointConflictHatchNumber = fHatchShiftToMatchPointVec[fConflictNumHatchLineTab[hatchNumber][conflictNumber]+1];
1011               }
1012               else if (listConflictPoints[conflictNumber].equals(listPoints[fConflictNumHatchLineTab[hatchNumber][conflictNumber]+1].getValue(),FLT_EPSILON*FLT_EPSILON*10)) {
1013                 // we look first point hatchNumber
1014                 currentPointConflictHatchNumber = fHatchShiftToMatchPointVec[fConflictNumHatchLineTab[hatchNumber][conflictNumber]];
1015               }
1016               else { // case of two lines have intersection point on a hatch
1017                 // it is the same case as a "end of line" and a "begin of line" conflict
1018                 currentPointCrossLine = true;
1019                 currentPointConflictHatchNumber =-1 ;
1020               }
1021               // test if conflictPoint == second line point
1022               if (listConflictPoints[conflictNumber+1].equals(listPoints[fConflictNumHatchLineTab[hatchNumber][conflictNumber+1]].getValue(),FLT_EPSILON*FLT_EPSILON*10)) {
1023                 // we look second point hatchNumber
1024                 nextPointConflictHatchNumber = fHatchShiftToMatchPointVec[fConflictNumHatchLineTab[hatchNumber][conflictNumber+1]+1];
1025               }
1026               else if (listConflictPoints[conflictNumber+1].equals(listPoints[fConflictNumHatchLineTab[hatchNumber][conflictNumber+1]+1].getValue(),FLT_EPSILON*FLT_EPSILON*10)) {
1027                 // we look first point hatchNumber
1028                 nextPointConflictHatchNumber = fHatchShiftToMatchPointVec[fConflictNumHatchLineTab[hatchNumber][conflictNumber+1]];
1029               }
1030               else { // case of two lines have intersection point on a hatch
1031                 // it is the same case as a "end of line" and a "begin of line" conflict
1032                 nextPointConflictHatchNumber = -1;
1033                 nextPointCrossLine = true;
1034               }
1035 
1036               // we have to compute the currentPointConflictHatchNumber and
1037               // nextPointConflictHatchNumber
1038               // if they are all the same side of the hatch, we have to ignore points
1039               // else, we have to draw a line
1040               if (currentPointCrossLine && nextPointCrossLine) {
1041                 // do not draw anything, this is the case of a hatch crossing
1042                 //  two identical line
1043               }
1044               // case of two points on  conflict on a contour point where nothing has to be draw
1045               else if ((!currentPointCrossLine && !nextPointCrossLine) && (currentPointConflictHatchNumber == nextPointConflictHatchNumber) && (currentPointConflictHatchNumber == fHatchShiftToMatchPointVec[fConflictNumHatchLineTab[hatchNumber][conflictNumber]])) {
1046                 if (drawEnabled) {
1047                   fPoints.push_back(listConflictPoints[conflictNumber].getValue());
1048                   orderConflictLineNumber.push_back(fConflictNumHatchLineTab[hatchNumber][conflictNumber]);
1049                   drawEnabled = false;
1050                 }
1051               }
1052               // we draw
1053               else if( ( (currentPointConflictHatchNumber -
1054                           fHatchShiftToMatchPointVec[fConflictNumHatchLineTab[hatchNumber][conflictNumber]]) *
1055                          (nextPointConflictHatchNumber -
1056                           fHatchShiftToMatchPointVec[fConflictNumHatchLineTab[hatchNumber][conflictNumber]]))
1057                         <=FLT_EPSILON) {
1058                 // try to see if we are trying to draw a hatch OVER a contour
1059                 unsigned int follow=conflictNumber+1;
1060                 bool overContour = false;
1061                 while ((follow <fConflictNumHatchLineTab[hatchNumber].size()) &&
1062                        (listConflictPoints[conflictNumber].equals(listConflictPoints[follow],FLT_EPSILON*FLT_EPSILON*10))) {
1063                   follow++;
1064                 }
1065                 if(follow < fConflictNumHatchLineTab[hatchNumber].size()) {
1066                   float alpha = 0;
1067                   bool findAlpha = true;
1068                   if (listConflictPoints[follow][0] != listConflictPoints[conflictNumber][0]) {
1069                     alpha = (listPoints[fConflictNumHatchLineTab[hatchNumber][follow]][0]-listConflictPoints[conflictNumber][0])/(listConflictPoints[follow][0]-listConflictPoints[conflictNumber][0]);
1070                   }
1071                   else if (listConflictPoints[follow][1] != listConflictPoints[conflictNumber][1]) {
1072                     alpha = (listPoints[fConflictNumHatchLineTab[hatchNumber][follow]][1]-listConflictPoints[conflictNumber][1])/(listConflictPoints[follow][1]-listConflictPoints[conflictNumber][1]);
1073                   }
1074                   else if (listConflictPoints[follow][2] != listConflictPoints[conflictNumber][2]) {
1075                     alpha = (listPoints[fConflictNumHatchLineTab[hatchNumber][follow]][2]-listConflictPoints[conflictNumber][2])/(listConflictPoints[follow][2]-listConflictPoints[conflictNumber][2]);
1076                   }
1077                   else {
1078                     findAlpha =false;
1079                   }
1080                   if (findAlpha) {
1081                     if ((alpha*(listConflictPoints[follow]-listConflictPoints[conflictNumber])).equals(listPoints[fConflictNumHatchLineTab[hatchNumber][follow]]-listConflictPoints[conflictNumber],FLT_EPSILON*FLT_EPSILON*10)) {
1082                       overContour = true;
1083                     }
1084                   }
1085                 }
1086                 if (!overContour) { // if we are not on a contour, no problem
1087                   fPoints.push_back(listConflictPoints[conflictNumber].getValue());
1088                   orderConflictLineNumber.push_back(fConflictNumHatchLineTab[hatchNumber][conflictNumber]);
1089                   drawEnabled = drawEnabled?false:true;
1090                   if (drawEnabled) {
1091                     fVertices.push_back(2);
1092                   }
1093                 } else { // else we have to stop drawing
1094                   if (drawEnabled) {
1095                     fPoints.push_back(listConflictPoints[conflictNumber].getValue());
1096                     orderConflictLineNumber.push_back(fConflictNumHatchLineTab[hatchNumber][conflictNumber]);
1097                     drawEnabled = false;
1098                   }
1099                 }
1100               }
1101               conflictNumber ++;
1102             } // end next== current
1103           }
1104           conflictNumber ++;
1105         } // end while
1106         if (drawEnabled) {
1107           fPoints.push_back(fPoints[fPoints.size()-1]);
1108 #ifdef TOOLS_HATCHER_DEBUG
1109           printf("hatcher : Probably a error during conflict resolution on hatch number %d :\nWe have close this line by putting two times the same point.\n\n",hatchNumber);
1110 #endif
1111         }
1112         //re put the order conflictNumHatchLineTab witch could be use by stripWidth
1113         fConflictNumHatchLineTab[hatchNumber].clear();
1114         for(unsigned int a=0;a<orderConflictLineNumber.size();a++) {
1115           fConflictNumHatchLineTab[hatchNumber].push_back(orderConflictLineNumber[a]);}
1116 
1117         // test if it is correct
1118       } // end resolve system errors
1119     }  // end conflict
1120   }
1121 
1122   if (fPoints.size() >0){
1123 
1124     if (precisionError == 0){
1125       delete [] listPoints;
1126       return true;
1127     }
1128     else {
1129 #ifdef TOOLS_HATCHER_DEBUG
1130       printf("hatcher : Exit with %d precision error during compute\n\n",precisionError);
1131 #endif
1132       delete [] listPoints;
1133       return false;
1134     }
1135   }
1136   delete [] listPoints;
1137   return true;
1138 }
1139 
1140 
1141 
1142 //////////////////////////////////////////////////////////////////////////////
1143 // Compute a vector system equation aA+bB=C
1144 // return vec2f(0,0) if there is an error
1145 // set the resolveResult variable to the error code :
1146 // COLINEAR if A and B are
1147 // PRECISION_ERROR if there is a lack of precision in computing
1148 // Z_ERROR if there s no solution for Z
1149 // UNDEFINED never throw
1150 // return a vec2f  for result. a is 'x' value and b is 'y' if it is correct
1151 //////////////////////////////////////////////////////////////////////////////
1152 
1153 inline vec2f hatcher::resolve_system(const vec3f& A,const vec3f& B,const vec3f& C) {
1154 
1155   fResolveResult = RESOLVE_UNDEFINED;
1156 
1157   double Ax = A[0];
1158   double Ay = A[1];
1159   double Az = A[2];
1160   double Bx = B[0];
1161   double By = B[1];
1162   double Bz = B[2];
1163   double Cx = C[0];
1164   double Cy = C[1];
1165   double Cz = C[2];
1166 
1167   double bDiv = (By*Ax-Ay*Bx);
1168   if (ffabs(float(bDiv)) <=FLT_EPSILON) {
1169     // we have to test in a other order
1170     double tmp;
1171     tmp = Ax; Ax = Ay; Ay = Az; Az = tmp;
1172     tmp = Bx; Bx = By; By = Bz; Bz = tmp;
1173     tmp = Cx; Cx = Cy; Cy = Cz; Cz = tmp;
1174 
1175     bDiv = (By*Ax-Ay*Bx);
1176 
1177     if  (ffabs(float(bDiv)) <=FLT_EPSILON) {
1178       // we have to test in a other order
1179       tmp = Ax; Ax = Ay; Ay = Az; Az = tmp;
1180       tmp = Bx; Bx = By; By = Bz; Bz = tmp;
1181       tmp = Cx; Cx = Cy; Cy = Cz; Cz = tmp;
1182 
1183       bDiv = (By*Ax-Ay*Bx);
1184       if (ffabs(float(bDiv)) <=FLT_EPSILON) {
1185         fResolveResult = RESOLVE_COLINEAR;
1186         return vec2f(0,0);
1187       }
1188     }
1189   }
1190   double b= (Cy*Ax-Ay*Cx)/bDiv;
1191   double a= -(Cy*Bx-By*Cx)/bDiv;
1192   double  bid = ffabs(float(a*Az+b*Bz - Cz));
1193 
1194   if (bid <= FLT_EPSILON) {
1195     fResolveResult = RESOLVE_OK;
1196     return vec2f((float)a,(float)b);
1197   }
1198   else {
1199 
1200     double minBoxValue = 1;
1201 
1202     double minXValue =FLT_MAX;
1203     double minYValue =FLT_MAX;
1204     double minZValue =FLT_MAX;
1205     if ((A[0] !=0) && ((A[0]) <minXValue)) minXValue = (A[0]);
1206     if ((B[0] !=0) && ((B[0]) <minXValue)) minXValue = (B[0]);
1207     if ((C[0] !=0) && ((C[0]) <minXValue)) minXValue = (C[0]);
1208     if ((A[1] !=0) && ((A[1]) <minYValue)) minYValue = (A[1]);
1209     if ((B[1] !=0) && ((B[1]) <minYValue)) minYValue = (B[1]);
1210     if ((C[1] !=0) && ((C[1]) <minYValue)) minYValue = (C[1]);
1211     if ((A[2] !=0) && ((A[2]) <minZValue)) minZValue = (A[2]);
1212     if ((B[2] !=0) && ((B[2]) <minZValue)) minZValue = (B[2]);
1213     if ((C[2] !=0) && ((C[2]) <minZValue)) minZValue = (C[2]);
1214 
1215 
1216     double maxXValue =-FLT_MAX;
1217     double maxYValue =-FLT_MAX;
1218     double maxZValue =-FLT_MAX;
1219     if ((A[0] !=0) && ((A[0]) >maxXValue)) maxXValue = (A[0]);
1220     if ((B[0] !=0) && ((B[0]) >maxXValue)) maxXValue = (B[0]);
1221     if ((C[0] !=0) && ((C[0]) >maxXValue)) maxXValue = (C[0]);
1222     if ((A[1] !=0) && ((A[1]) >maxYValue)) maxYValue = (A[1]);
1223     if ((B[1] !=0) && ((B[1]) >maxYValue)) maxYValue = (B[1]);
1224     if ((C[1] !=0) && ((C[1]) >maxYValue)) maxYValue = (C[1]);
1225     if ((A[2] !=0) && ((A[2]) >maxZValue)) maxZValue = (A[2]);
1226     if ((B[2] !=0) && ((B[2]) >maxZValue)) maxZValue = (B[2]);
1227     if ((C[2] !=0) && ((C[2]) >maxZValue)) maxZValue = (C[2]);
1228 
1229     if (((maxXValue-minXValue) <= (maxYValue-minYValue)) && ((maxXValue-minXValue) <= (maxZValue-minZValue))) { minBoxValue = maxXValue-minXValue; }
1230     else
1231       if (((maxYValue-minYValue) <= (maxXValue-minXValue)) && ((maxYValue-minYValue) <= (maxZValue-minZValue))) { minBoxValue = maxYValue-minYValue; }
1232       else
1233         { minBoxValue = maxZValue-minZValue; }
1234 
1235     minBoxValue *= fPrecisionFactor;
1236 
1237     if (bid <= minBoxValue) {
1238       fResolveResult = RESOLVE_OK;
1239       return vec2f((float)a,(float)b);
1240     }
1241     else {
1242       if (bid>100*minBoxValue) {
1243 #ifdef TOOLS_HATCHER_DEBUG
1244         printf("hatcher : ***** PRECISON ERROR ON Z  ******* compare %f > %f res :%f %f test %f %f bDiv %e\n\n",bid,100*minBoxValue,a,b,a*Ax+b*Bx-Cx,a*Ay+b*By-Cy,bDiv);
1245 #endif
1246         fResolveResult = RESOLVE_Z_ERROR;
1247       }
1248       else
1249         {
1250 #ifdef TOOLS_HATCHER_DEBUG
1251           printf("hatcher : ***** PRECISON ERROR  ******* compare %f > %f res :%f %f test %f %f bDiv %e\n\n",bid,100*minBoxValue,a,b,a*Ax+b*Bx-Cx,a*Ay+b*By-Cy,bDiv);
1252 #endif
1253           fResolveResult = RESOLVE_PRECISION_ERROR;
1254         }
1255       //return vec2f(0,0); //G.Barrand : commented out to quiet Coverity.
1256     }
1257   }
1258   return vec2f(0,0);
1259 }
1260 
1261 }
1262 
1263 //#undef TOOLS_HATCHER_DEBUG
1264