Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/externals/g4tools/include/tools/glutess/normal

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 // see license file for original license.
  2 
  3 #ifndef tools_glutess_normal
  4 #define tools_glutess_normal
  5 
  6 #include "_tess"
  7 
  8 /* __gl_projectPolygon( tess ) determines the polygon normal
  9  * and project vertices onto the plane of the polygon.
 10  */
 11 //void __gl_projectPolygon( GLUtesselator *tess );
 12 
 13 ////////////////////////////////////////////////////////
 14 /// inlined C code : ///////////////////////////////////
 15 ////////////////////////////////////////////////////////
 16 #include <cmath>
 17 
 18 #define Dot(u,v)  (u[0]*v[0] + u[1]*v[1] + u[2]*v[2])
 19 
 20 inline/*static*/ int static_LongAxis( GLUdouble v[3] )
 21 {
 22   int i = 0;
 23 
 24   if( GLU_ABS(v[1]) > GLU_ABS(v[0]) ) { i = 1; }
 25   if( GLU_ABS(v[2]) > GLU_ABS(v[i]) ) { i = 2; }
 26   return i;
 27 }
 28 
 29 inline/*static*/ void static_ComputeNormal( GLUtesselator *tess, GLUdouble norm[3] )
 30 {
 31   GLUvertex *v, *v1, *v2;
 32   GLUdouble c, tLen2, maxLen2;
 33   GLUdouble maxVal[3], minVal[3], d1[3], d2[3], tNorm[3];
 34   GLUvertex *maxVert[3], *minVert[3];
 35   GLUvertex *vHead = &tess->mesh->vHead;
 36   int i;
 37 
 38   maxVal[0] = maxVal[1] = maxVal[2] = -2 * GLU_TESS_MAX_COORD;
 39   minVal[0] = minVal[1] = minVal[2] = 2 * GLU_TESS_MAX_COORD;
 40   
 41   minVert[0] = 0;minVert[1] = 0;minVert[2] = 0; //G.Barrand : to quiet Coverity.
 42   maxVert[0] = 0;maxVert[1] = 0;maxVert[2] = 0; //G.Barrand : to quiet Coverity.
 43 
 44   for( v = vHead->next; v != vHead; v = v->next ) {
 45     for( i = 0; i < 3; ++i ) {
 46       c = v->coords[i];
 47       if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; }
 48       if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; }
 49     }
 50   }
 51 
 52   /* Find two vertices separated by at least 1/sqrt(3) of the maximum
 53    * distance between any two vertices
 54    */
 55   i = 0;
 56   if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; }
 57   if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; }
 58   if( minVal[i] >= maxVal[i] ) {
 59     /* All vertices are the same -- normal doesn't matter */
 60     norm[0] = 0; norm[1] = 0; norm[2] = 1;
 61     return;
 62   }
 63 
 64   /* Look for a third vertex which forms the triangle with maximum area
 65    * (Length of normal == twice the triangle area)
 66    */
 67   maxLen2 = 0;
 68   v1 = minVert[i];
 69   v2 = maxVert[i];
 70   if( !v1 || !v2 ) {norm[0] = 0; norm[1] = 0; norm[2] = 1;return;} //G.Barrand.
 71   d1[0] = v1->coords[0] - v2->coords[0];
 72   d1[1] = v1->coords[1] - v2->coords[1];
 73   d1[2] = v1->coords[2] - v2->coords[2];
 74   for( v = vHead->next; v != vHead; v = v->next ) {
 75     d2[0] = v->coords[0] - v2->coords[0];
 76     d2[1] = v->coords[1] - v2->coords[1];
 77     d2[2] = v->coords[2] - v2->coords[2];
 78     tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1];
 79     tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2];
 80     tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0];
 81     tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2];
 82     if( tLen2 > maxLen2 ) {
 83       maxLen2 = tLen2;
 84       norm[0] = tNorm[0];
 85       norm[1] = tNorm[1];
 86       norm[2] = tNorm[2];
 87     }
 88   }
 89 
 90   if( maxLen2 <= 0 ) {
 91     /* All points lie on a single line -- any decent normal will do */
 92     norm[0] = norm[1] = norm[2] = 0;
 93     norm[static_LongAxis(d1)] = 1;
 94   }
 95 }
 96 
 97 
 98 inline/*static*/ void static_CheckOrientation( GLUtesselator *tess )
 99 {
100   GLUdouble area;
101   GLUface *f, *fHead = &tess->mesh->fHead;
102   GLUvertex *v, *vHead = &tess->mesh->vHead;
103   GLUhalfEdge *e;
104 
105   /* When we compute the normal automatically, we choose the orientation
106    * so that the sum of the signed areas of all contours is non-negative.
107    */
108   area = 0;
109   for( f = fHead->next; f != fHead; f = f->next ) {
110     e = f->anEdge;
111     if( e->winding <= 0 ) continue;
112     do {
113       area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t);
114       e = e->Lnext;
115     } while( e != f->anEdge );
116   }
117   if( area < 0 ) {
118     /* Reverse the orientation by flipping all the t-coordinates */
119     for( v = vHead->next; v != vHead; v = v->next ) {
120       v->t = - v->t;
121     }
122     tess->tUnit[0] = - tess->tUnit[0];
123     tess->tUnit[1] = - tess->tUnit[1];
124     tess->tUnit[2] = - tess->tUnit[2];
125   }
126 }
127 
128 #if defined(SLANTED_SWEEP)
129 /* The "feature merging" is not intended to be complete.  There are
130  * special cases where edges are nearly parallel to the sweep line
131  * which are not implemented.  The algorithm should still behave
132  * robustly (ie. produce a reasonable tesselation) in the presence
133  * of such edges, however it may miss features which could have been
134  * merged.  We could minimize this effect by choosing the sweep line
135  * direction to be something unusual (ie. not parallel to one of the
136  * coordinate axes).
137  */
138 #define S_UNIT_X  0.50941539564955385 /* Pre-normalized */
139 #define S_UNIT_Y  0.86052074622010633
140 #else
141 #define S_UNIT_X  1.0
142 #define S_UNIT_Y  0.0
143 #endif
144 
145 /* Determine the polygon normal and project vertices onto the plane
146  * of the polygon.
147  */
148 inline void __gl_projectPolygon( GLUtesselator *tess )
149 {
150   GLUvertex *v, *vHead = &tess->mesh->vHead;
151   GLUdouble norm[3];
152   GLUdouble *sUnit, *tUnit;
153   int i, computedNormal = TOOLS_GLU_FALSE;
154 
155   norm[0] = tess->normal[0];
156   norm[1] = tess->normal[1];
157   norm[2] = tess->normal[2];
158   if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
159     static_ComputeNormal( tess, norm );
160     computedNormal = TOOLS_GLU_TRUE;
161   }
162   sUnit = tess->sUnit;
163   tUnit = tess->tUnit;
164   i = static_LongAxis( norm );
165 
166 #if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT)
167   /* Choose the initial sUnit vector to be approximately perpendicular
168    * to the normal.
169    */
170   Normalize( norm );
171 
172   sUnit[i] = 0;
173   sUnit[(i+1)%3] = S_UNIT_X;
174   sUnit[(i+2)%3] = S_UNIT_Y;
175 
176   /* Now make it exactly perpendicular */
177   w = Dot( sUnit, norm );
178   sUnit[0] -= w * norm[0];
179   sUnit[1] -= w * norm[1];
180   sUnit[2] -= w * norm[2];
181   Normalize( sUnit );
182 
183   /* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */
184   tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1];
185   tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2];
186   tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0];
187   Normalize( tUnit );
188 #else
189   /* Project perpendicular to a coordinate axis -- better numerically */
190   sUnit[i] = 0;
191   sUnit[(i+1)%3] = S_UNIT_X;
192   sUnit[(i+2)%3] = S_UNIT_Y;
193 
194   tUnit[i] = 0;
195   tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y;
196   tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X;
197 #endif
198 
199   /* Project the vertices onto the sweep plane */
200   for( v = vHead->next; v != vHead; v = v->next ) {
201     v->s = Dot( v->coords, sUnit );
202     v->t = Dot( v->coords, tUnit );
203   }
204   if( computedNormal ) {
205     static_CheckOrientation( tess );
206   }
207 }
208 
209 #endif