Geant4 Cross Reference |
1 // see license file for original license. 2 3 #ifndef tools_glutess_geom 4 #define tools_glutess_geom 5 6 #include "mesh" 7 8 #define VertEq(u,v) ((u)->s == (v)->s && (u)->t == (v)->t) 9 #define VertLeq(u,v) (((u)->s < (v)->s) || ((u)->s == (v)->s && (u)->t <= (v)->t)) 10 11 #define EdgeEval(u,v,w) __gl_edgeEval(u,v,w) 12 #define EdgeSign(u,v,w) __gl_edgeSign(u,v,w) 13 14 /* Versions of VertLeq, EdgeSign, EdgeEval with s and t transposed. */ 15 16 #define TransLeq(u,v) (((u)->t < (v)->t) || \ 17 ((u)->t == (v)->t && (u)->s <= (v)->s)) 18 #define TransEval(u,v,w) __gl_transEval(u,v,w) 19 #define TransSign(u,v,w) __gl_transSign(u,v,w) 20 21 22 #define EdgeGoesLeft(e) VertLeq( (e)->Dst, (e)->Org ) 23 #define EdgeGoesRight(e) VertLeq( (e)->Org, (e)->Dst ) 24 25 #define VertL1dist(u,v) (GLU_ABS(u->s - v->s) + GLU_ABS(u->t - v->t)) 26 27 #define VertCCW(u,v,w) __gl_vertCCW(u,v,w) 28 29 //////////////////////////////////////////////////////// 30 /// inlined C code : /////////////////////////////////// 31 //////////////////////////////////////////////////////// 32 33 inline int __gl_vertLeq( GLUvertex *u, GLUvertex *v ) 34 { 35 /* Returns TOOLS_GLU_TRUE if u is lexicographically <= v. */ 36 37 return VertLeq( u, v ); 38 } 39 40 inline GLUdouble __gl_edgeEval( GLUvertex *u, GLUvertex *v, GLUvertex *w ) 41 { 42 /* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w), 43 * evaluates the t-coord of the edge uw at the s-coord of the vertex v. 44 * Returns v->t - (uw)(v->s), ie. the signed distance from uw to v. 45 * If uw is vertical (and thus passes thru v), the result is zero. 46 * 47 * The calculation is extremely accurate and stable, even when v 48 * is very close to u or w. In particular if we set v->t = 0 and 49 * let r be the negated result (this evaluates (uw)(v->s)), then 50 * r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t). 51 */ 52 GLUdouble gapL, gapR; 53 54 assert( VertLeq( u, v ) && VertLeq( v, w )); 55 56 gapL = v->s - u->s; 57 gapR = w->s - v->s; 58 59 if( gapL + gapR > 0 ) { 60 if( gapL < gapR ) { 61 return (v->t - u->t) + (u->t - w->t) * (gapL / (gapL + gapR)); 62 } else { 63 return (v->t - w->t) + (w->t - u->t) * (gapR / (gapL + gapR)); 64 } 65 } 66 /* vertical line */ 67 return 0; 68 } 69 70 inline GLUdouble __gl_edgeSign( GLUvertex *u, GLUvertex *v, GLUvertex *w ) 71 { 72 /* Returns a number whose sign matches EdgeEval(u,v,w) but which 73 * is cheaper to evaluate. Returns > 0, == 0 , or < 0 74 * as v is above, on, or below the edge uw. 75 */ 76 GLUdouble gapL, gapR; 77 78 /* 79 #define VertLeq(u,v) (((u)->s < (v)->s) || \ 80 ((u)->s == (v)->s && (u)->t <= (v)->t)) 81 */ 82 assert( VertLeq( u, v ) && VertLeq( v, w )); 83 84 gapL = v->s - u->s; 85 gapR = w->s - v->s; 86 87 if( gapL + gapR > 0 ) { 88 return (v->t - w->t) * gapL + (v->t - u->t) * gapR; 89 } 90 /* vertical line */ 91 return 0; 92 } 93 94 95 /*********************************************************************** 96 * Define versions of EdgeSign, EdgeEval with s and t transposed. 97 */ 98 99 inline GLUdouble __gl_transEval( GLUvertex *u, GLUvertex *v, GLUvertex *w ) 100 { 101 /* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w), 102 * evaluates the t-coord of the edge uw at the s-coord of the vertex v. 103 * Returns v->s - (uw)(v->t), ie. the signed distance from uw to v. 104 * If uw is vertical (and thus passes thru v), the result is zero. 105 * 106 * The calculation is extremely accurate and stable, even when v 107 * is very close to u or w. In particular if we set v->s = 0 and 108 * let r be the negated result (this evaluates (uw)(v->t)), then 109 * r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s). 110 */ 111 GLUdouble gapL, gapR; 112 113 assert( TransLeq( u, v ) && TransLeq( v, w )); 114 115 gapL = v->t - u->t; 116 gapR = w->t - v->t; 117 118 if( gapL + gapR > 0 ) { 119 if( gapL < gapR ) { 120 return (v->s - u->s) + (u->s - w->s) * (gapL / (gapL + gapR)); 121 } else { 122 return (v->s - w->s) + (w->s - u->s) * (gapR / (gapL + gapR)); 123 } 124 } 125 /* vertical line */ 126 return 0; 127 } 128 129 inline GLUdouble __gl_transSign( GLUvertex *u, GLUvertex *v, GLUvertex *w ) 130 { 131 /* Returns a number whose sign matches TransEval(u,v,w) but which 132 * is cheaper to evaluate. Returns > 0, == 0 , or < 0 133 * as v is above, on, or below the edge uw. 134 */ 135 GLUdouble gapL, gapR; 136 137 assert( TransLeq( u, v ) && TransLeq( v, w )); 138 139 gapL = v->t - u->t; 140 gapR = w->t - v->t; 141 142 if( gapL + gapR > 0 ) { 143 return (v->s - w->s) * gapL + (v->s - u->s) * gapR; 144 } 145 /* vertical line */ 146 return 0; 147 } 148 149 150 inline int __gl_vertCCW( GLUvertex *u, GLUvertex *v, GLUvertex *w ) 151 { 152 /* For almost-degenerate situations, the results are not reliable. 153 * Unless the floating-point arithmetic can be performed without 154 * rounding errors, *any* implementation will give incorrect results 155 * on some degenerate inputs, so the client must have some way to 156 * handle this situation. 157 */ 158 return (u->s*(v->t - w->t) + v->s*(w->t - u->t) + w->s*(u->t - v->t)) >= 0; 159 } 160 161 /* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b), 162 * or (x+y)/2 if a==b==0. It requires that a,b >= 0, and enforces 163 * this in the rare case that one argument is slightly negative. 164 * The implementation is extremely stable numerically. 165 * In particular it guarantees that the result r satisfies 166 * MIN(x,y) <= r <= MAX(x,y), and the results are very accurate 167 * even when a and b differ greatly in magnitude. 168 */ 169 #define Interpolate(a,x,b,y) \ 170 (a = (a < 0) ? 0 : a, b = (b < 0) ? 0 : b, \ 171 ((a <= b) ? ((b == 0) ? ((x+y) / 2) \ 172 : (x + (y-x) * (a/(a+b)))) \ 173 : (y + (x-y) * (b/(a+b))))) 174 175 //#define Swap(a,b) if (1) { GLUvertex *t = a; a = b; b = t; } else 176 #define Swap(a,b) do { GLUvertex *t = a; a = b; b = t; } while(false) 177 178 inline void __gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1, 179 GLUvertex *o2, GLUvertex *d2, 180 GLUvertex *v ) 181 /* Given edges (o1,d1) and (o2,d2), compute their point of intersection. 182 * The computed point is guaranteed to lie in the intersection of the 183 * bounding rectangles defined by each edge. 184 */ 185 { 186 GLUdouble z1, z2; 187 188 /* This is certainly not the most efficient way to find the intersection 189 * of two line segments, but it is very numerically stable. 190 * 191 * Strategy: find the two middle vertices in the VertLeq ordering, 192 * and interpolate the intersection s-value from these. Then repeat 193 * using the TransLeq ordering to find the intersection t-value. 194 */ 195 196 if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); } 197 if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); } 198 if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); } 199 200 if( ! VertLeq( o2, d1 )) { 201 /* Technically, no intersection -- do our best */ 202 v->s = (o2->s + d1->s) / 2; 203 } else if( VertLeq( d1, d2 )) { 204 /* Interpolate between o2 and d1 */ 205 z1 = EdgeEval( o1, o2, d1 ); 206 z2 = EdgeEval( o2, d1, d2 ); 207 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; } 208 v->s = Interpolate( z1, o2->s, z2, d1->s ); 209 } else { 210 /* Interpolate between o2 and d2 */ 211 z1 = EdgeSign( o1, o2, d1 ); 212 z2 = -EdgeSign( o1, d2, d1 ); 213 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; } 214 v->s = Interpolate( z1, o2->s, z2, d2->s ); 215 } 216 217 /* Now repeat the process for t */ 218 219 if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); } 220 if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); } 221 if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); } 222 223 if( ! TransLeq( o2, d1 )) { 224 /* Technically, no intersection -- do our best */ 225 v->t = (o2->t + d1->t) / 2; 226 } else if( TransLeq( d1, d2 )) { 227 /* Interpolate between o2 and d1 */ 228 z1 = TransEval( o1, o2, d1 ); 229 z2 = TransEval( o2, d1, d2 ); 230 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; } 231 v->t = Interpolate( z1, o2->t, z2, d1->t ); 232 } else { 233 /* Interpolate between o2 and d2 */ 234 z1 = TransSign( o1, o2, d1 ); 235 z2 = -TransSign( o1, d2, d1 ); 236 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; } 237 v->t = Interpolate( z1, o2->t, z2, d2->t ); 238 } 239 } 240 241 #endif