Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/externals/clhep/src/Transform3D.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 // -*- C++ -*-
  2 // ---------------------------------------------------------------------------
  3 //
  4 // This file is a part of the CLHEP - a Class Library for High Energy Physics.
  5 //
  6 // Hep geometrical 3D Transformation library
  7 //
  8 // Author: Evgeni Chernyaev <Evgueni.Tcherniaev@cern.ch>
  9 //
 10 // History:
 11 // 24.09.96 E.Chernyaev - initial version
 12 
 13 #include <iostream>
 14 #include <cmath>  // double std::abs()
 15 #include "CLHEP/Geometry/Transform3D.h"
 16 
 17 namespace HepGeom {
 18 
 19   const Transform3D Transform3D::Identity = Transform3D ();
 20 
 21   //   T R A N S F O R M A T I O N -------------------------------------------
 22 
 23   double Transform3D::operator () (int i, int j) const {
 24     if (i == 0) {
 25       if (j == 0) { return xx_; }
 26       if (j == 1) { return xy_; }
 27       if (j == 2) { return xz_; } 
 28       if (j == 3) { return dx_; } 
 29     } else if (i == 1) {
 30       if (j == 0) { return yx_; }
 31       if (j == 1) { return yy_; }
 32       if (j == 2) { return yz_; } 
 33       if (j == 3) { return dy_; } 
 34     } else if (i == 2) {
 35       if (j == 0) { return zx_; }
 36       if (j == 1) { return zy_; }
 37       if (j == 2) { return zz_; } 
 38       if (j == 3) { return dz_; } 
 39     } else if (i == 3) {
 40       if (j == 0) { return 0.0; }
 41       if (j == 1) { return 0.0; }
 42       if (j == 2) { return 0.0; } 
 43       if (j == 3) { return 1.0; } 
 44     } 
 45     std::cerr << "Transform3D subscripting: bad indices "
 46         << "(" << i << "," << j << ")" << std::endl;
 47     return 0.0;
 48   }
 49   
 50   //--------------------------------------------------------------------------
 51   Transform3D Transform3D::operator*(const Transform3D & b) const {
 52     return Transform3D
 53       (xx_*b.xx_+xy_*b.yx_+xz_*b.zx_, xx_*b.xy_+xy_*b.yy_+xz_*b.zy_,
 54        xx_*b.xz_+xy_*b.yz_+xz_*b.zz_, xx_*b.dx_+xy_*b.dy_+xz_*b.dz_+dx_,
 55        yx_*b.xx_+yy_*b.yx_+yz_*b.zx_, yx_*b.xy_+yy_*b.yy_+yz_*b.zy_,
 56        yx_*b.xz_+yy_*b.yz_+yz_*b.zz_, yx_*b.dx_+yy_*b.dy_+yz_*b.dz_+dy_,
 57        zx_*b.xx_+zy_*b.yx_+zz_*b.zx_, zx_*b.xy_+zy_*b.yy_+zz_*b.zy_,
 58        zx_*b.xz_+zy_*b.yz_+zz_*b.zz_, zx_*b.dx_+zy_*b.dy_+zz_*b.dz_+dz_);
 59   }
 60 
 61   // -------------------------------------------------------------------------
 62   Transform3D::Transform3D(const Point3D<double> & fr0,
 63          const Point3D<double> & fr1,
 64          const Point3D<double> & fr2,
 65          const Point3D<double> & to0,
 66          const Point3D<double> & to1,
 67          const Point3D<double> & to2)
 68   /***********************************************************************
 69    *                                                                     *
 70    * Name: Transform3D::Transform3D              Date:    24.09.96 *
 71    * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
 72    *                                                                     *
 73    * Function: Create 3D Transformation from one coordinate system       *
 74    *           defined by its origin "fr0" and two axes "fr0->fr1",      *
 75    *           "fr0->fr2" to another coordinate system "to0", "to0->to1" *
 76    *           and "to0->to2"                                            *
 77    *                                                                     *
 78    ***********************************************************************/
 79   {
 80     Vector3D<double> x1,y1,z1, x2,y2,z2;
 81     x1 = (fr1 - fr0).unit();
 82     y1 = (fr2 - fr0).unit();
 83     x2 = (to1 - to0).unit();
 84     y2 = (to2 - to0).unit();
 85     
 86     //   C H E C K   A N G L E S
 87     
 88     double cos1, cos2;
 89     cos1 = x1*y1;
 90     cos2 = x2*y2;
 91     
 92     if (std::abs(1.0-cos1) <= 0.000001 || std::abs(1.0-cos2) <= 0.000001) {
 93       std::cerr << "Transform3D: zero angle between axes" << std::endl;
 94       setIdentity();
 95     }else{
 96       if (std::abs(cos1-cos2) > 0.000001) {
 97   std::cerr << "Transform3D: angles between axes are not equal"
 98       << std::endl;
 99       }
100       
101       //   F I N D   R O T A T I O N   M A T R I X
102       
103       z1 = (x1.cross(y1)).unit();
104       y1  = z1.cross(x1);
105     
106       z2 = (x2.cross(y2)).unit();
107       y2  = z2.cross(x2);
108       
109       double detxx =  (y1.y()*z1.z() - z1.y()*y1.z());
110       double detxy = -(y1.x()*z1.z() - z1.x()*y1.z());
111       double detxz =  (y1.x()*z1.y() - z1.x()*y1.y());
112       double detyx = -(x1.y()*z1.z() - z1.y()*x1.z());
113       double detyy =  (x1.x()*z1.z() - z1.x()*x1.z());
114       double detyz = -(x1.x()*z1.y() - z1.x()*x1.y());
115       double detzx =  (x1.y()*y1.z() - y1.y()*x1.z());
116       double detzy = -(x1.x()*y1.z() - y1.x()*x1.z());
117       double detzz =  (x1.x()*y1.y() - y1.x()*x1.y());
118  
119       double txx = x2.x()*detxx + y2.x()*detyx + z2.x()*detzx; 
120       double txy = x2.x()*detxy + y2.x()*detyy + z2.x()*detzy; 
121       double txz = x2.x()*detxz + y2.x()*detyz + z2.x()*detzz; 
122       double tyx = x2.y()*detxx + y2.y()*detyx + z2.y()*detzx; 
123       double tyy = x2.y()*detxy + y2.y()*detyy + z2.y()*detzy; 
124       double tyz = x2.y()*detxz + y2.y()*detyz + z2.y()*detzz; 
125       double tzx = x2.z()*detxx + y2.z()*detyx + z2.z()*detzx; 
126       double tzy = x2.z()*detxy + y2.z()*detyy + z2.z()*detzy; 
127       double tzz = x2.z()*detxz + y2.z()*detyz + z2.z()*detzz; 
128 
129       //   S E T    T R A N S F O R M A T I O N 
130 
131       double dx1 = fr0.x(), dy1 = fr0.y(), dz1 = fr0.z();
132       double dx2 = to0.x(), dy2 = to0.y(), dz2 = to0.z();
133 
134       setTransform(txx, txy, txz, dx2-txx*dx1-txy*dy1-txz*dz1,
135        tyx, tyy, tyz, dy2-tyx*dx1-tyy*dy1-tyz*dz1,
136        tzx, tzy, tzz, dz2-tzx*dx1-tzy*dy1-tzz*dz1);
137     }
138   }
139 
140   // -------------------------------------------------------------------------
141   Transform3D Transform3D::inverse() const
142   /***********************************************************************
143    *                                                                     *
144    * Name: Transform3D::inverse                     Date:    24.09.96 *
145    * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
146    *                                                                     *
147    * Function: Find inverse affine transformation                        *
148    *                                                                     *
149    ***********************************************************************/
150   {
151     double detxx = yy_*zz_-yz_*zy_;
152     double detxy = yx_*zz_-yz_*zx_;
153     double detxz = yx_*zy_-yy_*zx_;
154     double det   = xx_*detxx - xy_*detxy + xz_*detxz;
155     if (det == 0) {
156       std::cerr << "Transform3D::inverse error: zero determinant" << std::endl;
157       return Transform3D();
158     }
159     det = 1./det; detxx *= det; detxy *= det; detxz *= det;
160     double detyx = (xy_*zz_ - xz_*zy_)*det;
161     double detyy = (xx_*zz_ - xz_*zx_)*det;
162     double detyz = (xx_*zy_ - xy_*zx_)*det;
163     double detzx = (xy_*yz_ - xz_*yy_)*det;
164     double detzy = (xx_*yz_ - xz_*yx_)*det;
165     double detzz = (xx_*yy_ - xy_*yx_)*det;
166     return Transform3D
167       (detxx, -detyx,  detzx, -detxx*dx_+detyx*dy_-detzx*dz_,
168       -detxy,  detyy, -detzy,  detxy*dx_-detyy*dy_+detzy*dz_,
169        detxz, -detyz,  detzz, -detxz*dx_+detyz*dy_-detzz*dz_);
170   }
171 
172   // -------------------------------------------------------------------------
173   void Transform3D::getDecomposition(Scale3D & scale,
174              Rotate3D & rotation,
175              Translate3D & translation) const
176   /***********************************************************************
177    *                                                           CLHEP-1.7 *
178    * Name: Transform3D::getDecomposition            Date:       09.06.01 *
179    * Author: E.Chernyaev (IHEP/Protvino)            Revised:             *
180    *                                                                     *
181    * Function: Gets decomposition of general transformation on           *
182    *           three consequentive specific transformations:             *
183    *           Scale, then Rotation, then Translation.                   *
184    *           If there was a reflection, then ScaleZ will be negative.  *
185    *                                                                     *
186    ***********************************************************************/
187   {
188     double sx = std::sqrt(xx_*xx_ + yx_*yx_ + zx_*zx_);
189     double sy = std::sqrt(xy_*xy_ + yy_*yy_ + zy_*zy_);
190     double sz = std::sqrt(xz_*xz_ + yz_*yz_ + zz_*zz_);
191 
192     if (xx_*(yy_*zz_-yz_*zy_) -
193   xy_*(yx_*zz_-yz_*zx_) +
194   xz_*(yx_*zy_-yy_*zx_) < 0) sz = -sz;
195     scale.setTransform(sx,0,0,0,  0,sy,0,0, 0,0,sz,0);
196     rotation.setTransform(xx_/sx,xy_/sy,xz_/sz,0,
197         yx_/sx,yy_/sy,yz_/sz,0,
198         zx_/sx,zy_/sy,zz_/sz,0); 
199     translation.setTransform(1,0,0,dx_, 0,1,0,dy_, 0,0,1,dz_);
200   }
201 
202   // -------------------------------------------------------------------------
203   bool Transform3D::isNear(const Transform3D & t, double tolerance) const
204   { 
205     return ( (std::abs(xx_ - t.xx_) <= tolerance) && 
206        (std::abs(xy_ - t.xy_) <= tolerance) &&
207        (std::abs(xz_ - t.xz_) <= tolerance) &&
208        (std::abs(dx_ - t.dx_) <= tolerance) &&
209        (std::abs(yx_ - t.yx_) <= tolerance) &&
210        (std::abs(yy_ - t.yy_) <= tolerance) &&
211        (std::abs(yz_ - t.yz_) <= tolerance) &&
212        (std::abs(dy_ - t.dy_) <= tolerance) &&
213        (std::abs(zx_ - t.zx_) <= tolerance) &&
214        (std::abs(zy_ - t.zy_) <= tolerance) &&
215        (std::abs(zz_ - t.zz_) <= tolerance) &&
216        (std::abs(dz_ - t.dz_) <= tolerance) );
217   }
218 
219   // -------------------------------------------------------------------------
220   bool Transform3D::operator==(const Transform3D & t) const
221   {
222     return (this == &t) ? true :
223       (xx_==t.xx_ && xy_==t.xy_ && xz_==t.xz_ && dx_==t.dx_ && 
224        yx_==t.yx_ && yy_==t.yy_ && yz_==t.yz_ && dy_==t.dy_ &&
225        zx_==t.zx_ && zy_==t.zy_ && zz_==t.zz_ && dz_==t.dz_ );
226   }
227 
228   //   3 D   R O T A T I O N -------------------------------------------------
229 
230   Rotate3D::Rotate3D(double a,
231          const Point3D<double> & p1,
232          const Point3D<double> & p2) : Transform3D()
233   /***********************************************************************
234    *                                                                     *
235    * Name: Rotate3D::Rotate3D                       Date:    24.09.96 *
236    * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
237    *                                                                     *
238    * Function: Create 3D Rotation through angle "a" (counterclockwise)   *
239    *           around the axis p1->p2                                    *
240    *                                                                     *
241    ***********************************************************************/
242   {
243     if (a == 0) return;
244 
245     double cx = p2.x()-p1.x(), cy = p2.y()-p1.y(), cz = p2.z()-p1.z();
246     double ll = std::sqrt(cx*cx + cy*cy + cz*cz); 
247     if (ll == 0) {
248       std::cerr << "Rotate3D: zero axis" << std::endl;
249     }else{
250       double cosa = std::cos(a), sina = std::sin(a);
251       cx /= ll; cy /= ll; cz /= ll;   
252     
253       double txx = cosa + (1-cosa)*cx*cx;
254       double txy =        (1-cosa)*cx*cy - sina*cz;
255       double txz =        (1-cosa)*cx*cz + sina*cy;
256     
257       double tyx =        (1-cosa)*cy*cx + sina*cz;
258       double tyy = cosa + (1-cosa)*cy*cy; 
259       double tyz =        (1-cosa)*cy*cz - sina*cx;
260     
261       double tzx =        (1-cosa)*cz*cx - sina*cy;
262       double tzy =        (1-cosa)*cz*cy + sina*cx;
263       double tzz = cosa + (1-cosa)*cz*cz;
264     
265       double tdx = p1.x(), tdy = p1.y(), tdz = p1.z(); 
266     
267       setTransform(txx, txy, txz, tdx-txx*tdx-txy*tdy-txz*tdz,
268        tyx, tyy, tyz, tdy-tyx*tdx-tyy*tdy-tyz*tdz,
269        tzx, tzy, tzz, tdz-tzx*tdx-tzy*tdy-tzz*tdz);
270     }
271   }
272 
273   //   3 D   R E F L E C T I O N ---------------------------------------------
274 
275   Reflect3D::Reflect3D(double a, double b, double c, double d)
276   /***********************************************************************
277    *                                                                     *
278    * Name: Reflect3D::Reflect3D                        Date:    24.09.96 *
279    * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
280    *                                                                     *
281    * Function: Create 3D Reflection in a plane a*x + b*y + c*z + d = 0   *
282    *                                                                     *
283    ***********************************************************************/
284   {
285     double ll = a*a+b*b+c*c;
286     if (ll == 0) {
287       std::cerr << "Reflect3D: zero normal" << std::endl;
288       setIdentity();
289     }else{
290       ll = 1/ll;
291       double aa = a*a*ll, ab = a*b*ll, ac = a*c*ll, ad = a*d*ll,
292        bb = b*b*ll, bc = b*c*ll, bd = b*d*ll,
293        cc = c*c*ll, cd = c*d*ll;
294       setTransform(-aa+bb+cc, -ab-ab,    -ac-ac,    -ad-ad,
295        -ab-ab,     aa-bb+cc, -bc-bc,    -bd-bd,
296        -ac-ac,    -bc-bc,     aa+bb-cc, -cd-cd);
297     }
298   }
299 } /* namespace HepGeom */
300