Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/externals/clhep/src/SpaceVectorD.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 // -*- C++ -*-
  2 // ---------------------------------------------------------------------------
  3 //
  4 // This file is a part of the CLHEP - a Class Library for High Energy Physics.
  5 //
  6 // This is the implementation of the subset of those methods of the Hep3Vector 
  7 // class which originated from the ZOOM SpaceVector class *and* which involve
  8 // the esoteric concepts of polar/azimuthal angular decomposition.
  9 //
 10 
 11 #include "CLHEP/Vector/ThreeVector.h"
 12 
 13 #include <cmath>
 14 
 15 namespace CLHEP  {
 16 
 17 //-*********************************************
 18 //      - 6 -
 19 // Decomposition of an angle between two vectors
 20 //
 21 //-*********************************************
 22 
 23 
 24 double Hep3Vector::polarAngle (const Hep3Vector & v2) const {
 25   return std::fabs(v2.getTheta() - getTheta());
 26 } /* polarAngle */
 27 
 28 double Hep3Vector::polarAngle (const Hep3Vector & v2,
 29         const Hep3Vector & ref) const {
 30   return std::fabs( v2.angle(ref) - angle(ref) );
 31 } /* polarAngle (v2, ref) */
 32 
 33 // double Hep3Vector::azimAngle (const Hep3Vector & v2) const 
 34 // is now in the .icc file as deltaPhi(v2)
 35 
 36 double Hep3Vector::azimAngle  (const Hep3Vector & v2,
 37         const Hep3Vector & ref) const {
 38 
 39   Hep3Vector vperp ( perpPart(ref) );
 40   if ( vperp.mag2() == 0 ) {
 41     std::cerr << "Hep3Vector::azimAngle() - "
 42       << "Cannot find azimuthal angle with reference direction parallel to "
 43       << "vector 1 -- will return zero" << std::endl;
 44    return 0;
 45   }
 46 
 47   Hep3Vector v2perp ( v2.perpPart(ref) );
 48   if ( v2perp.mag2() == 0 ) {
 49     std::cerr << "Hep3Vector::azimAngle() - "
 50       << "Cannot find azimuthal angle with reference direction parallel to "
 51       << "vector 2 -- will return zero" << std::endl;
 52    return 0;
 53   }
 54 
 55   double ang = vperp.angle(v2perp);
 56 
 57   // Now compute the sign of the answer:  that of U*(VxV2) or 
 58   // the equivalent expression V*(V2xU).
 59 
 60   if  ( dot(v2.cross(ref)) >= 0 ) {
 61     return ang;
 62   } else {
 63     return -ang;
 64   }
 65 
 66   //-| Note that if V*(V2xU) is zero, we want to return 0 or PI
 67   //-| depending on whether vperp is aligned or antialigned with v2perp.
 68   //-| The computed angle() expression does this properly.
 69 
 70 } /* azimAngle (v2, ref) */
 71 
 72 }  // namespace CLHEP
 73