Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/externals/clhep/src/RotationY.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 // -*- C++ -*-
  2 // ---------------------------------------------------------------------------
  3 //
  4 // This file is a part of the CLHEP - a Class Library for High Energy Physics.
  5 //
  6 // This is the implementation of methods of the HepRotationY class which
  7 // were introduced when ZOOM PhysicsVectors was merged in.
  8 //
  9 
 10 #include "CLHEP/Vector/RotationY.h"
 11 #include "CLHEP/Vector/AxisAngle.h"
 12 #include "CLHEP/Vector/EulerAngles.h"
 13 #include "CLHEP/Vector/LorentzRotation.h"
 14 #include "CLHEP/Units/PhysicalConstants.h"
 15 
 16 #include <cmath>
 17 #include <stdlib.h>
 18 #include <iostream>
 19 
 20 namespace CLHEP  {
 21 
 22 static inline double safe_acos (double x) {
 23   if (std::abs(x) <= 1.0) return std::acos(x);
 24   return ( (x>0) ? 0 : CLHEP::pi );
 25 }
 26 
 27 HepRotationY::HepRotationY(double ddelta) : 
 28     its_d(proper(ddelta)), its_s(std::sin(ddelta)), its_c(std::cos(ddelta))
 29 {}
 30 
 31 HepRotationY & HepRotationY::set ( double ddelta ) {
 32   its_d = proper(ddelta);
 33   its_s = std::sin(its_d);
 34   its_c = std::cos(its_d);
 35   return *this;
 36 }
 37 
 38 double  HepRotationY::phi() const {
 39   if ( its_d == 0 ) {
 40     return 0;
 41   } else if ( (its_d < 0) || (its_d == CLHEP::pi) )  {
 42     return +CLHEP::halfpi;
 43   } else {
 44     return -CLHEP::halfpi;
 45   }
 46 }  // HepRotationY::phi()
 47 
 48 double  HepRotationY::theta() const {
 49   return  std::fabs( its_d );
 50 }  // HepRotationY::theta()
 51 
 52 double  HepRotationY::psi() const {
 53   if ( its_d == 0 ) {
 54     return 0;
 55   } else if ( (its_d < 0) || (its_d == CLHEP::pi) )  {
 56     return -CLHEP::halfpi;
 57   } else {
 58     return +CLHEP::halfpi;
 59   }
 60 }  // HepRotationY::psi()
 61 
 62 HepEulerAngles HepRotationY::eulerAngles() const {
 63   return HepEulerAngles(  phi(),  theta(),  psi() );
 64 }  // HepRotationY::eulerAngles()
 65 
 66 
 67 // From the defining code in the implementation of CLHEP (in Rotation.cc)
 68 // it is clear that thetaX, phiX form the polar angles in the original
 69 // coordinate system of the new X axis (and similarly for phiY and phiZ).
 70 //
 71 // This code is taken directly from the original CLHEP. However, there are as
 72 // shown opportunities for significant speed improvement.
 73 
 74 double HepRotationY::phiX() const {
 75   return (yx() == 0.0 && xx() == 0.0) ? 0.0 : std::atan2(yx(),xx());
 76       // or ---- return 0;
 77 }
 78 
 79 double HepRotationY::phiY() const {
 80   return (yy() == 0.0 && xy() == 0.0) ? 0.0 : std::atan2(yy(),xy());
 81     // or ----  return CLHEP::halfpi;
 82 }
 83 
 84 double HepRotationY::phiZ() const {
 85   return (yz() == 0.0 && xz() == 0.0) ? 0.0 : std::atan2(yz(),xz());
 86     // or ----  return 0;
 87 }
 88 
 89 double HepRotationY::thetaX() const {
 90   return safe_acos(zx());
 91 }
 92 
 93 double HepRotationY::thetaY() const {
 94   return safe_acos(zy());
 95     // or ----  return CLHEP::halfpi;
 96 }
 97 
 98 double HepRotationY::thetaZ() const {
 99   return safe_acos(zz());  
100     // or ---- return d;
101 }
102 
103 void HepRotationY::setDelta ( double ddelta ) {
104   set(ddelta);
105 }
106 
107 void HepRotationY::decompose
108   (HepAxisAngle & rotation, Hep3Vector & boost) const {
109   boost.set(0,0,0);
110   rotation = axisAngle();
111 }
112 
113 void HepRotationY::decompose
114   (Hep3Vector & boost, HepAxisAngle & rotation) const {
115   boost.set(0,0,0);
116   rotation = axisAngle();
117 }
118 
119 void HepRotationY::decompose
120         (HepRotation & rotation, HepBoost & boost) const {
121   boost.set(0,0,0);
122   rotation = HepRotation(*this);
123 }
124  
125 void HepRotationY::decompose
126         (HepBoost & boost, HepRotation & rotation) const {
127   boost.set(0,0,0);
128   rotation = HepRotation(*this);
129 }
130 
131 double HepRotationY::distance2( const HepRotationY & r  ) const {
132   double answer = 2.0 * ( 1.0 - ( its_s * r.its_s + its_c * r.its_c ) ) ;
133   return (answer >= 0) ? answer : 0;
134 }
135 
136 double HepRotationY::distance2( const HepRotation & r  ) const {
137   double sum =        xx() * r.xx()          +  xz() * r.xz()
138                  + r.yy() 
139                        + zx() * r.zx()          + zz() * r.zz();
140   double answer = 3.0 - sum;
141   return (answer >= 0 ) ? answer : 0;
142 }
143 
144 double HepRotationY::distance2( const HepLorentzRotation & lt  ) const {
145   HepAxisAngle a; 
146   Hep3Vector   b;
147   lt.decompose(b, a);
148   double bet = b.beta();
149   double bet2 = bet*bet;
150   HepRotation r(a);
151   return bet2/(1-bet2) + distance2(r);
152 }
153 
154 double HepRotationY::distance2( const HepBoost & lt ) const {
155   return distance2( HepLorentzRotation(lt));
156 }
157 
158 double HepRotationY::howNear( const HepRotationY & r ) const {
159   return std::sqrt(distance2(r));
160 }
161 double HepRotationY::howNear( const HepRotation & r ) const {
162   return std::sqrt(distance2(r));
163 }
164 double HepRotationY::howNear( const HepBoost & lt ) const {
165   return std::sqrt(distance2(lt));
166 }
167 double HepRotationY::howNear( const HepLorentzRotation & lt ) const {
168   return std::sqrt(distance2(lt));
169 }
170 bool HepRotationY::isNear(const HepRotationY & r,double epsilon)const{
171   return (distance2(r) <= epsilon*epsilon);
172 }
173 bool HepRotationY::isNear(const HepRotation & r,double epsilon)const {
174   return (distance2(r) <= epsilon*epsilon);
175 }
176 bool HepRotationY::isNear( const HepBoost & lt,double epsilon) const {
177   return (distance2(lt) <= epsilon*epsilon);
178 }
179 bool HepRotationY::isNear( const HepLorentzRotation & lt,
180                                      double epsilon) const {
181   return (distance2(lt) <= epsilon*epsilon);
182 }
183 
184 double HepRotationY::norm2() const {
185   return 2.0 - 2.0 * its_c;
186 }
187 
188 std::ostream & HepRotationY::print( std::ostream & os ) const {
189   os << "\nRotation about Y (" << its_d <<
190                 ") [cos d = " << its_c << " sin d = " << its_s << "]\n";
191   return os;
192 }
193 
194 }  // namespace CLHEP
195