Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/externals/clhep/src/RandPoisson.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 // -*- C++ -*-
  2 //
  3 // -----------------------------------------------------------------------
  4 //                             HEP Random
  5 //                         --- RandPoisson ---
  6 //                      class implementation file
  7 // -----------------------------------------------------------------------
  8 // This file is part of Geant4 (simulation toolkit for HEP).
  9 
 10 // =======================================================================
 11 // Gabriele Cosmo - Created: 5th September 1995
 12 //                - Added not static Shoot() method: 17th May 1996
 13 //                - Algorithm now operates on doubles: 31st Oct 1996
 14 //                - Added methods to shoot arrays: 28th July 1997
 15 //                - Added check in case xm=-1: 4th February 1998
 16 // J.Marraffino   - Added default mean as attribute and
 17 //                  operator() with mean: 16th Feb 1998
 18 // Gabriele Cosmo - Relocated static data from HepRandom: 5th Jan 1999
 19 // M Fischler     - put and get to/from streams 12/15/04
 20 // M Fischler       - put/get to/from streams uses pairs of ulongs when
 21 //      + storing doubles avoid problems with precision 
 22 //      4/14/05
 23 // Mark Fischler  - Repaired BUG - when mean > 2 billion, was returning
 24 //                  mean instead of the proper value.  01/13/06
 25 // =======================================================================
 26 
 27 #include "CLHEP/Random/RandPoisson.h"
 28 #include "CLHEP/Units/PhysicalConstants.h"
 29 #include "CLHEP/Random/DoubConv.h"
 30 #include <cmath>  // for std::floor()
 31 #include <iostream>
 32 #include <string>
 33 #include <vector>
 34 
 35 namespace CLHEP {
 36 
 37 std::string RandPoisson::name() const {return "RandPoisson";}
 38 HepRandomEngine & RandPoisson::engine() {return *localEngine;}
 39 
 40 // Initialisation of static data
 41 CLHEP_THREAD_LOCAL double RandPoisson::status_st[3] = {0., 0., 0.};
 42 CLHEP_THREAD_LOCAL double RandPoisson::oldm_st = -1.0;
 43 const double RandPoisson::meanMax_st = 2.0E9;
 44 
 45 RandPoisson::~RandPoisson() {
 46 }
 47 
 48 double RandPoisson::operator()() {
 49   return double(fire( defaultMean ));
 50 }
 51 
 52 double RandPoisson::operator()( double mean ) {
 53   return double(fire( mean ));
 54 }
 55 
 56 double gammln(double xx) {
 57 
 58 // Returns the value ln(Gamma(xx) for xx > 0.  Full accuracy is obtained for 
 59 // xx > 1. For 0 < xx < 1. the reflection formula (6.1.4) can be used first.
 60 // (Adapted from Numerical Recipes in C)
 61 
 62   static const double cof[6] = {76.18009172947146,-86.50532032941677,
 63                              24.01409824083091, -1.231739572450155,
 64                              0.1208650973866179e-2, -0.5395239384953e-5};
 65   int j;
 66   double x = xx - 1.0;
 67   double tmp = x + 5.5;
 68   tmp -= (x + 0.5) * std::log(tmp);
 69   double ser = 1.000000000190015;
 70 
 71   for ( j = 0; j <= 5; j++ ) {
 72     x += 1.0;
 73     ser += cof[j]/x;
 74   }
 75   return -tmp + std::log(2.5066282746310005*ser);
 76 }
 77 
 78 static
 79 double normal (HepRandomEngine* eptr)     // mf 1/13/06
 80 {
 81   double r;
 82   double v1,v2,fac;
 83   do {
 84     v1 = 2.0 * eptr->flat() - 1.0;
 85     v2 = 2.0 * eptr->flat() - 1.0;
 86     r = v1*v1 + v2*v2;
 87   } while ( r > 1.0 );
 88 
 89   fac = std::sqrt(-2.0*std::log(r)/r);
 90   return v2*fac;
 91 }
 92 
 93 long RandPoisson::shoot(double xm) {
 94 
 95 // Returns as a floating-point number an integer value that is a random
 96 // deviation drawn from a Poisson distribution of mean xm, using flat()
 97 // as a source of uniform random numbers.
 98 // (Adapted from Numerical Recipes in C)
 99 
100   double em, t, y;
101   double sq, alxm, g1;
102   double om = getOldMean();
103   HepRandomEngine* anEngine = HepRandom::getTheEngine();
104 
105   double* pstatus = getPStatus();
106   sq = pstatus[0];
107   alxm = pstatus[1];
108   g1 = pstatus[2];
109 
110   if( xm == -1 ) return 0;
111   if( xm < 12.0 ) {
112     if( xm != om ) {
113       setOldMean(xm);
114       g1 = std::exp(-xm);
115     }
116     em = -1;
117     t = 1.0;
118     do {
119       em += 1.0;
120       t *= anEngine->flat();
121     } while( t > g1 );
122   }
123   else if ( xm < getMaxMean() ) {
124     if ( xm != om ) {
125       setOldMean(xm);
126       sq = std::sqrt(2.0*xm);
127       alxm = std::log(xm);
128       g1 = xm*alxm - gammln(xm + 1.0);
129     }
130     do {
131       do {
132   y = std::tan(CLHEP::pi*anEngine->flat());
133   em = sq*y + xm;
134       } while( em < 0.0 );
135       em = std::floor(em);
136       t = 0.9*(1.0 + y*y)* std::exp(em*alxm - gammln(em + 1.0) - g1);
137     } while( anEngine->flat() > t );
138   }
139   else {
140     em = xm + std::sqrt(xm) * normal (anEngine);  // mf 1/13/06
141     if ( static_cast<long>(em) < 0 ) 
142       em = static_cast<long>(xm) >= 0 ? xm : getMaxMean();
143   }    
144   setPStatus(sq,alxm,g1);
145   return long(em);
146 }
147 
148 void RandPoisson::shootArray(const int size, long* vect, double m1)
149 {
150   for( long* v = vect; v != vect + size; ++v )
151     *v = shoot(m1);
152 }
153 
154 long RandPoisson::shoot(HepRandomEngine* anEngine, double xm) {
155 
156 // Returns as a floating-point number an integer value that is a random
157 // deviation drawn from a Poisson distribution of mean xm, using flat()
158 // of a given Random Engine as a source of uniform random numbers.
159 // (Adapted from Numerical Recipes in C)
160 
161   double em, t, y;
162   double sq, alxm, g1;
163   double om = getOldMean();
164 
165   double* pstatus = getPStatus();
166   sq = pstatus[0];
167   alxm = pstatus[1];
168   g1 = pstatus[2];
169 
170   if( xm == -1 ) return 0;
171   if( xm < 12.0 ) {
172     if( xm != om ) {
173       setOldMean(xm);
174       g1 = std::exp(-xm);
175     }
176     em = -1;
177     t = 1.0;
178     do {
179       em += 1.0;
180       t *= anEngine->flat();
181     } while( t > g1 );
182   }
183   else if ( xm < getMaxMean() ) {
184     if ( xm != om ) {
185       setOldMean(xm);
186       sq = std::sqrt(2.0*xm);
187       alxm = std::log(xm);
188       g1 = xm*alxm - gammln(xm + 1.0);
189     }
190     do {
191       do {
192   y = std::tan(CLHEP::pi*anEngine->flat());
193   em = sq*y + xm;
194       } while( em < 0.0 );
195       em = std::floor(em);
196       t = 0.9*(1.0 + y*y)* std::exp(em*alxm - gammln(em + 1.0) - g1);
197     } while( anEngine->flat() > t );
198   }
199   else {
200     em = xm + std::sqrt(xm) * normal (anEngine);  // mf 1/13/06
201     if ( static_cast<long>(em) < 0 ) 
202       em = static_cast<long>(xm) >= 0 ? xm : getMaxMean();
203   }    
204   setPStatus(sq,alxm,g1);
205   return long(em);
206 }
207 
208 void RandPoisson::shootArray(HepRandomEngine* anEngine, const int size,
209                              long* vect, double m1)
210 {
211   for( long* v = vect; v != vect + size; ++v )
212     *v = shoot(anEngine,m1);
213 }
214 
215 long RandPoisson::fire() {
216   return long(fire( defaultMean ));
217 }
218 
219 long RandPoisson::fire(double xm) {
220 
221 // Returns as a floating-point number an integer value that is a random
222 // deviation drawn from a Poisson distribution of mean xm, using flat()
223 // as a source of uniform random numbers.
224 // (Adapted from Numerical Recipes in C)
225 
226   double em, t, y;
227   double sq, alxm, g1;
228 
229   sq = status[0];
230   alxm = status[1];
231   g1 = status[2];
232 
233   if( xm == -1 ) return 0;
234   if( xm < 12.0 ) {
235     if( xm != oldm ) {
236       oldm = xm;
237       g1 = std::exp(-xm);
238     }
239     em = -1;
240     t = 1.0;
241     do {
242       em += 1.0;
243       t *= localEngine->flat();
244     } while( t > g1 );
245   }
246   else if ( xm < meanMax ) {
247     if ( xm != oldm ) {
248       oldm = xm;
249       sq = std::sqrt(2.0*xm);
250       alxm = std::log(xm);
251       g1 = xm*alxm - gammln(xm + 1.0);
252     }
253     do {
254       do {
255   y = std::tan(CLHEP::pi*localEngine->flat());
256   em = sq*y + xm;
257       } while( em < 0.0 );
258       em = std::floor(em);
259       t = 0.9*(1.0 + y*y)* std::exp(em*alxm - gammln(em + 1.0) - g1);
260     } while( localEngine->flat() > t );
261   }
262   else {
263     em = xm + std::sqrt(xm) * normal (localEngine.get()); // mf 1/13/06
264     if ( static_cast<long>(em) < 0 ) 
265       em = static_cast<long>(xm) >= 0 ? xm : getMaxMean();
266   }    
267   status[0] = sq; status[1] = alxm; status[2] = g1;
268   return long(em);
269 }
270 
271 void RandPoisson::fireArray(const int size, long* vect )
272 {
273   for( long* v = vect; v != vect + size; ++v )
274     *v = fire( defaultMean );
275 }
276 
277 void RandPoisson::fireArray(const int size, long* vect, double m1)
278 {
279   for( long* v = vect; v != vect + size; ++v )
280     *v = fire( m1 );
281 }
282 
283 std::ostream & RandPoisson::put ( std::ostream & os ) const {
284   long pr=os.precision(20);
285   std::vector<unsigned long> t(2);
286   os << " " << name() << "\n";
287   os << "Uvec" << "\n";
288   t = DoubConv::dto2longs(meanMax);
289   os << meanMax << " " << t[0] << " " << t[1] << "\n";
290   t = DoubConv::dto2longs(defaultMean);
291   os << defaultMean << " " << t[0] << " " << t[1] << "\n";
292   t = DoubConv::dto2longs(status[0]);
293   os << status[0] << " " << t[0] << " " << t[1] << "\n";
294   t = DoubConv::dto2longs(status[1]);
295   os << status[1] << " " << t[0] << " " << t[1] << "\n";
296   t = DoubConv::dto2longs(status[2]);
297   os << status[2] << " " << t[0] << " " << t[1] << "\n";
298   t = DoubConv::dto2longs(oldm);
299   os << oldm << " " << t[0] << " " << t[1] << "\n";
300   os.precision(pr);
301   return os;
302 }
303 
304 std::istream & RandPoisson::get ( std::istream & is ) {
305   std::string inName;
306   is >> inName;
307   if (inName != name()) {
308     is.clear(std::ios::badbit | is.rdstate());
309     std::cerr << "Mismatch when expecting to read state of a "
310             << name() << " distribution\n"
311         << "Name found was " << inName
312         << "\nistream is left in the badbit state\n";
313     return is;
314   }
315   if (possibleKeywordInput(is, "Uvec", meanMax)) {
316     std::vector<unsigned long> t(2);
317     is >> meanMax     >> t[0] >> t[1]; meanMax     = DoubConv::longs2double(t); 
318     is >> defaultMean >> t[0] >> t[1]; defaultMean = DoubConv::longs2double(t); 
319     is >> status[0]   >> t[0] >> t[1]; status[0]   = DoubConv::longs2double(t); 
320     is >> status[1]   >> t[0] >> t[1]; status[1]   = DoubConv::longs2double(t); 
321     is >> status[2]   >> t[0] >> t[1]; status[2]   = DoubConv::longs2double(t); 
322     is >> oldm        >> t[0] >> t[1]; oldm        = DoubConv::longs2double(t); 
323     return is;
324   }
325   // is >> meanMax encompassed by possibleKeywordInput
326   is >> defaultMean >> status[0] >> status[1] >> status[2];
327   return is;
328 }
329 
330 }  // namespace CLHEP
331 
332