Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/externals/clhep/src/RandBinomial.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 // -*- C++ -*-
  2 //
  3 // -----------------------------------------------------------------------
  4 //                             HEP Random
  5 //                        --- RandBinomial ---
  6 //                      class implementation file
  7 // -----------------------------------------------------------------------
  8 
  9 // =======================================================================
 10 // John Marraffino - Created: 12th May 1998
 11 // M Fischler     - put and get to/from streams 12/10/04
 12 // M Fischler       - put/get to/from streams uses pairs of ulongs when
 13 //      + storing doubles avoid problems with precision 
 14 //      4/14/05
 15 //
 16 // =======================================================================
 17 
 18 #include "CLHEP/Random/RandBinomial.h"
 19 #include "CLHEP/Random/DoubConv.h"
 20 #include "CLHEP/Utility/thread_local.h"
 21 #include <algorithm>  // for min() and max()
 22 #include <cmath>  // for exp()
 23 #include <iostream>
 24 #include <vector>
 25 
 26 namespace CLHEP {
 27 
 28 std::string RandBinomial::name() const {return "RandBinomial";}
 29 HepRandomEngine & RandBinomial::engine() {return *localEngine;}
 30 
 31 RandBinomial::~RandBinomial() {
 32 }
 33 
 34 double RandBinomial::shoot( HepRandomEngine *anEngine, long n,
 35                                                           double p ) {
 36   return genBinomial( anEngine, n, p );
 37 }
 38 
 39 double RandBinomial::shoot( long n, double p ) {
 40   HepRandomEngine *anEngine = HepRandom::getTheEngine();
 41   return genBinomial( anEngine, n, p );
 42 }
 43 
 44 double RandBinomial::fire( long n, double p ) {
 45   return genBinomial( localEngine.get(), n, p );
 46 }
 47 
 48 void RandBinomial::shootArray( const int size, double* vect,
 49                             long n, double p )
 50 {
 51   for( double* v = vect; v != vect+size; ++v )
 52     *v = shoot(n,p);
 53 }
 54 
 55 void RandBinomial::shootArray( HepRandomEngine* anEngine,
 56                             const int size, double* vect,
 57                             long n, double p )
 58 {
 59   for( double* v = vect; v != vect+size; ++v )
 60     *v = shoot(anEngine,n,p);
 61 }
 62 
 63 void RandBinomial::fireArray( const int size, double* vect)
 64 {
 65   for( double* v = vect; v != vect+size; ++v )
 66     *v = fire(defaultN,defaultP);
 67 }
 68 
 69 void RandBinomial::fireArray( const int size, double* vect,
 70                            long n, double p )
 71 {
 72   for( double* v = vect; v != vect+size; ++v )
 73     *v = fire(n,p);
 74 }
 75 
 76 /*************************************************************************
 77  *                                                                       *
 78  *  StirlingCorrection()                                                 *
 79  *                                                                       *
 80  *  Correction term of the Stirling approximation for log(k!)            *
 81  *  (series in 1/k, or table values for small k)                         *
 82  *  with long int parameter k                                            *
 83  *                                                                       *
 84  *************************************************************************
 85  *                                                                       *
 86  * log k! = (k + 1/2)log(k + 1) - (k + 1) + (1/2)log(2Pi) +              *
 87  *          StirlingCorrection(k + 1)                                    *
 88  *                                                                       *
 89  * log k! = (k + 1/2)log(k)     -  k      + (1/2)log(2Pi) +              *
 90  *          StirlingCorrection(k)                                        *
 91  *                                                                       *
 92  *************************************************************************/
 93 
 94 static double StirlingCorrection(long int k)
 95 {
 96   #define   C1               8.33333333333333333e-02     //  +1/12 
 97   #define   C3              -2.77777777777777778e-03     //  -1/360
 98   #define   C5               7.93650793650793651e-04     //  +1/1260
 99   #define   C7              -5.95238095238095238e-04     //  -1/1680
100 
101   static const double  c[31] = {   0.0,
102            8.106146679532726e-02, 4.134069595540929e-02,
103            2.767792568499834e-02, 2.079067210376509e-02,
104            1.664469118982119e-02, 1.387612882307075e-02,
105            1.189670994589177e-02, 1.041126526197209e-02,
106            9.255462182712733e-03, 8.330563433362871e-03,
107            7.573675487951841e-03, 6.942840107209530e-03,
108            6.408994188004207e-03, 5.951370112758848e-03,
109            5.554733551962801e-03, 5.207655919609640e-03,
110            4.901395948434738e-03, 4.629153749334029e-03,
111            4.385560249232324e-03, 4.166319691996922e-03,
112            3.967954218640860e-03, 3.787618068444430e-03,
113            3.622960224683090e-03, 3.472021382978770e-03,
114            3.333155636728090e-03, 3.204970228055040e-03,
115            3.086278682608780e-03, 2.976063983550410e-03,
116            2.873449362352470e-03, 2.777674929752690e-03,
117   };
118   double    r, rr;
119 
120   if (k > 30L) {
121     r = 1.0 / (double) k;  rr = r * r;
122     return(r*(C1 + rr*(C3 + rr*(C5 + rr*C7))));
123   }
124   else  return(c[k]);
125 }
126 
127 double RandBinomial::genBinomial( HepRandomEngine *anEngine, long n, double p )
128 {
129 /******************************************************************
130  *                                                                *
131  *     Binomial-Distribution - Acceptance Rejection/Inversion     *
132  *                                                                *
133  ******************************************************************
134  *                                                                *
135  * Acceptance Rejection method combined with Inversion for        *
136  * generating Binomial random numbers with parameters             *
137  * n (number of trials) and p (probability of success).           *
138  * For  min(n*p,n*(1-p)) < 10  the Inversion method is applied:   *
139  * The random numbers are generated via sequential search,        *
140  * starting at the lowest index k=0. The cumulative probabilities *
141  * are avoided by using the technique of chop-down.               *
142  * For  min(n*p,n*(1-p)) >= 10  Acceptance Rejection is used:     *
143  * The algorithm is based on a hat-function which is uniform in   *
144  * the centre region and exponential in the tails.                *
145  * A triangular immediate acceptance region in the centre speeds  *
146  * up the generation of binomial variates.                        *
147  * If candidate k is near the mode, f(k) is computed recursively  *
148  * starting at the mode m.                                        *
149  * The acceptance test by Stirling's formula is modified          *
150  * according to W. Hoermann (1992): The generation of binomial    *
151  * random variates, to appear in J. Statist. Comput. Simul.       *
152  * If  p < .5  the algorithm is applied to parameters n, p.       *
153  * Otherwise p is replaced by 1-p, and k is replaced by n - k.    *
154  *                                                                *
155  ******************************************************************
156  *                                                                *
157  * FUNCTION:    - btpec samples a random number from the binomial *
158  *                distribution with parameters n and p  and is    *
159  *                valid for  n*min(p,1-p)  >  0.                  *
160  * REFERENCE:   - V. Kachitvichyanukul, B.W. Schmeiser (1988):    *
161  *                Binomial random variate generation,             *
162  *                Communications of the ACM 31, 216-222.          *
163  * SUBPROGRAMS: - StirlingCorrection()                            *
164  *                            ... Correction term of the Stirling *
165  *                                approximation for log(k!)       *
166  *                                (series in 1/k or table values  *
167  *                                for small k) with long int k    *
168  *              - anEngine    ... Pointer to a (0,1)-Uniform      * 
169  *                                engine                          *
170  *                                                                *
171  * Implemented by H. Zechner and P. Busswald, September 1992      *
172  ******************************************************************/
173 
174 #define C1_3     0.33333333333333333
175 #define C5_8     0.62500000000000000
176 #define C1_6     0.16666666666666667
177 #define DMAX_KM  20L
178 
179   static CLHEP_THREAD_LOCAL long int      n_last = -1L,  n_prev = -1L;
180   static CLHEP_THREAD_LOCAL double        par,np,p0,q,p_last = -1.0, p_prev = -1.0;
181   static CLHEP_THREAD_LOCAL long          b,m,nm;
182   static CLHEP_THREAD_LOCAL double        pq, rc, ss, xm, xl, xr, ll, lr, c,
183          p1, p2, p3, p4, ch;
184 
185   long                 bh,i, K, Km, nK;
186   double               f, rm, U, V, X, T, E;
187 
188   if (n != n_last || p != p_last)                 // set-up 
189   {
190    n_last = n;
191    p_last = p;
192    par=std::min(p,1.0-p);
193    q=1.0-par;
194    np = n*par;
195 
196 // Check for invalid input values
197 
198    if( np <= 0.0 ) return (-1.0);
199 
200    rm = np + par;
201    m  = (long int) rm;                      // mode, integer 
202    if (np<10)
203   {
204    p0=std::exp(n*std::log(q));              // Chop-down
205    bh=(long int)(np+10.0*std::sqrt(np*q));
206    b=std::min(n,bh);
207   }
208    else
209      {
210   rc = (n + 1.0) * (pq = par / q);          // recurr. relat.
211   ss = np * q;                              // variance  
212   i  = (long int) (2.195*std::sqrt(ss) - 4.6*q); // i = p1 - 0.5
213   xm = m + 0.5;
214   xl = (double) (m - i);                    // limit left 
215   xr = (double) (m + i + 1L);               // limit right
216   f  = (rm - xl) / (rm - xl*par);  ll = f * (1.0 + 0.5*f);
217   f  = (xr - rm) / (xr * q);     lr = f * (1.0 + 0.5*f);
218   c  = 0.134 + 20.5/(15.3 + (double) m);    // parallelogram
219               // height
220   p1 = i + 0.5;
221   p2 = p1 * (1.0 + c + c);                  // probabilities
222   p3 = p2 + c/ll;                           // of regions 1-4
223   p4 = p3 + c/lr;
224      }
225   }
226   if( np <= 0.0 ) return (-1.0);
227   if (np<10)                                      //Inversion Chop-down
228    {
229     double pk;
230 
231     K=0;
232     pk=p0;
233     U=anEngine->flat();
234     while (U>pk)
235     {
236      ++K;
237      if (K>b)
238        {
239     U=anEngine->flat();
240     K=0;
241     pk=p0;
242        }
243      else
244        {
245     U-=pk;
246     pk=(double)(((n-K+1)*par*pk)/(K*q));
247        }
248     }
249     return ((p>0.5) ? (double)(n-K):(double)K);
250    }
251 
252   for (;;)
253   {
254    V = anEngine->flat();
255    if ((U = anEngine->flat() * p4) <= p1)  // triangular region
256     {
257      K=(long int) (xm - U + p1*V);
258   return ((p>0.5) ? (double)(n-K):(double)K);  // immediate accept
259     }
260    if (U <= p2)                                // parallelogram
261     {
262      X = xl + (U - p1)/c;
263      if ((V = V*c + 1.0 - std::fabs(xm - X)/p1) >= 1.0)  continue;
264      K = (long int) X;
265     }
266    else if (U <= p3)                           // left tail
267     {
268      if ((X = xl + std::log(V)/ll) < 0.0)  continue;
269      K = (long int) X;
270      V *= (U - p2) * ll;
271     }
272    else                                         // right tail
273     {
274      if ((K = (long int) (xr - std::log(V)/lr)) > n)  continue;
275      V *= (U - p3) * lr;
276     }
277 
278  // acceptance test :  two cases, depending on |K - m|
279    if ((Km = std::labs(K - m)) <= DMAX_KM || Km + Km + 2L >= ss)
280     {
281 
282  // computation of p(K) via recurrence relationship from the mode
283     f = 1.0;                              // f(m)
284     if (m < K)
285    {
286     for (i = m; i < K; )
287     {
288     if ((f *= (rc / ++i - pq)) < V)  break;  // multiply  f
289     }
290    }
291     else
292    {
293     for (i = K; i < m; )
294      {
295       if ((V *= (rc / ++i - pq)) > f)  break; // multiply  V
296      }
297    }
298     if (V <= f)  break;                       // acceptance test
299    }
300   else
301    {
302 
303  // lower and upper squeeze tests, based on lower bounds for log p(K)
304     V = std::log(V);
305     T = - Km * Km / (ss + ss);
306     E =  (Km / ss) * ((Km * (Km * C1_3 + C5_8) + C1_6) / ss + 0.5);
307     if (V <= T - E)  break;
308     if (V <= T + E)
309      {
310   if (n != n_prev || par != p_prev)
311    {
312     n_prev = n;
313     p_prev = par;
314 
315     nm = n - m + 1L;
316     ch = xm * std::log((m + 1.0)/(pq * nm)) +
317          StirlingCorrection(m + 1L) + StirlingCorrection(nm);
318    }
319   nK = n - K + 1L;
320 
321  // computation of log f(K) via Stirling's formula
322  // final acceptance-rejection test
323   if (V <= ch + (n + 1.0)*std::log((double) nm / (double) nK) +
324                  (K + 0.5)*std::log(nK * pq / (K + 1.0)) -
325                  StirlingCorrection(K + 1L) - StirlingCorrection(nK))  break;
326     }
327    }
328   }
329   return ((p>0.5) ? (double)(n-K):(double)K);
330 }
331 
332 std::ostream & RandBinomial::put ( std::ostream & os ) const {
333   long pr=os.precision(20);
334   std::vector<unsigned long> t(2);
335   os << " " << name() << "\n";
336   os << "Uvec" << "\n";
337   t = DoubConv::dto2longs(defaultP);
338   os << defaultN << " " << defaultP << " " << t[0] << " " << t[1] << "\n";
339   os.precision(pr);
340   return os;
341 }
342 
343 std::istream & RandBinomial::get ( std::istream & is ) {
344   std::string inName;
345   is >> inName;
346   if (inName != name()) {
347     is.clear(std::ios::badbit | is.rdstate());
348     std::cerr << "Mismatch when expecting to read state of a "
349             << name() << " distribution\n"
350         << "Name found was " << inName
351         << "\nistream is left in the badbit state\n";
352     return is;
353   }
354   if (possibleKeywordInput(is, "Uvec", defaultN)) {
355     std::vector<unsigned long> t(2);
356     is >> defaultN >> defaultP;
357     is >> t[0] >> t[1]; defaultP = DoubConv::longs2double(t); 
358     return is;
359   }
360   // is >> defaultN encompassed by possibleKeywordInput
361   is >> defaultP;
362   return is;
363 }
364 
365 
366 }  // namespace CLHEP
367