Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 /// \file ExGflashHomoShowerTuning.hh 28 /// \brief Definition of the ExGflashHomoShowerTuning class 29 // 30 // --------------------------------------------------------------- 31 // GEANT 4 class header file 32 // 33 // ExGflashHomoShowerTuning 34 // 35 // Class description: 36 // 37 // Tuning class for GFlash homogeneous shower parameterisation. 38 // Definitions: 39 // <t>: shower center of gravity 40 // T: Depth at shower maximum 41 // Ec: Critical energy 42 // X0: Radiation length 43 // y = E/Ec 44 // 45 // Homogeneous media: 46 // Average shower profile 47 // (1/E)(dE(t)/dt) = f(t) 48 // = (beta*t)**(alpha-1)*beta*std::exp(-beta*t)/Gamma(alpha) 49 // where Gamma is the Gamma function 50 // 51 // <t> = alpha/beta 52 // T = (alpha-1)/beta 53 // and 54 // T = ln(y) + t1 55 // alpha = a1+(a2+a3/Z)ln(y) 56 57 // Author: J.P. Wellisch - October 2004 58 //--------------------------------------------------------------- 59 60 #ifndef ExGflashHomoShowerTuning_hh 61 #define ExGflashHomoShowerTuning_hh 62 63 #include "GVFlashHomoShowerTuning.hh" 64 65 class ExGflashHomoShowerTuning : public GVFlashHomoShowerTuning 66 { 67 public: 68 ExGflashHomoShowerTuning() = default; 69 ~ExGflashHomoShowerTuning() override = default; 70 71 public: // with description 72 G4double ParAveT1() override { return -0.812; } // t1 73 G4double ParAveA1() override { return 0.81; } // a1 74 G4double ParAveA2() override { return 0.458; } // a2 75 G4double ParAveA3() override { return 2.26; } // a3 76 77 G4double ParSigLogT1() override { return -1.4; } // t1 78 G4double ParSigLogT2() override { return 1.26; } // t2 79 // std::sqrt(var(ln(T))) = 1/(t+t2*ln(y)) 80 81 G4double ParSigLogA1() override { return -0.58; } // a1 82 G4double ParSigLogA2() override { return 0.86; } // a2 83 // std::sqrt(var(ln(alpha))) = 1/(a1+a2*ln(y)) 84 85 G4double ParRho1() override { return 0.705; } // r1 86 G4double ParRho2() override { return -0.023; } // r2 87 // Correlation(ln(T),ln(alpha))=r1+r2*ln(y) 88 89 // Radial profiles 90 // f(r) := (1/dE(t))(dE(t,r)/dr) 91 // Ansatz: 92 // f(r) = p(2*r*Rc**2)/(r**2+Rc**2)**2+(1-p)*(2*r*Rt**2)/(r**2+Rt**2)**2, 93 // 0<p<1 94 95 G4double ParRC1() override { return 0.0251; } // c1 96 G4double ParRC2() override { return 0.00319; } // c2 97 G4double ParRC3() override { return 0.1162; } // c3 98 G4double ParRC4() override { return -0.000381; } // c4 99 // Rc (t/T)= z1 +z2*t/T 100 // z1 = c1+c2*ln(E/GeV) 101 // z2 = c3+c4*Z 102 103 G4double ParRT1() override { return 0.659; } // t1 104 G4double ParRT2() override { return -0.00309; } // t2 105 G4double ParRT3() override { return 0.645; } // k2 106 G4double ParRT4() override { return -2.59; } // k3 107 G4double ParRT5() override { return 0.3585; } // t5 108 G4double ParRT6() override { return 0.0412; } // t6 109 // Rt (t/T)= k1*(std::exp(k3*(t/T-k2))+std::exp(k4*(t/T-k2))) 110 // k1 = t1+t2*Z 111 // k4 = t5+t6*ln(E/GeV) 112 113 G4double ParWC1() override { return 2.632; } // c1 114 G4double ParWC2() override { return -0.00094; } // c2 115 G4double ParWC3() override { return 0.401; } // c3 116 G4double ParWC4() override { return 0.00187; } // c4 117 G4double ParWC5() override { return 1.313; } // c5 118 G4double ParWC6() override { return -0.0686; } // c6 119 // p(t/T) = p1*std::exp((p2-t/T)/p3 - std::exp((p2-t/T)/p3)) 120 // p1 = c1+c2*Z 121 // p2 = c3+c4*Z 122 // p3 = c5 + c6*ln(E/GeV) 123 124 G4double ParSpotN1() override { return 93.; } // n1 125 G4double ParSpotN2() override { return 0.876; } // n2 126 // Fluctuations on radial profiles through number of spots 127 // The total number of spots needed for a shower is 128 // Ns = n1*ln(Z)(E/GeV)**n2 129 130 // The number of spots per longitudinal interval is: 131 // (1/Ns)(dNs(t)/dt) = f(t) 132 // = (beta*t)**(alpha-1)*beta*std::exp(-beta*t)/Gamma(alpha) 133 // <t> = alpha_s/beta_s 134 // Ts = (alpha_s-1)/beta_s 135 // and 136 // Ts = T*(t1+t2*Z) 137 // alpha_s = alpha*(a1+a2*Z) 138 139 G4double ParSpotT1() override { return 0.698; } // t1 140 G4double ParSpotT2() override { return 0.00212; } // t2 141 142 G4double ParSpotA1() override { return 0.639; } // a1 143 G4double ParSpotA2() override { return 0.00334; } // a2 144 }; 145 146 #endif 147