Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/parameterisations/Par04/training/README.md

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 This repository contains the set of scripts used to train, generate and validate the generative model used
  2 in this example.
  3 
  4 - root2h5.py: translation of ROOT file with showers to h5 files.
  5 - core/constants.py: defines the set of common variables.
  6 - core/model.py: defines the VAE model class and a handler to construct the model.
  7 - utils/preprocess.py: defines the data loading and preprocessing functions.
  8 - utils/hyperparameter_tuner.py: defines the HyperparameterTuner class.
  9 - utils/gpu_limiter.py: defines a logic responsible for GPU memory management.
 10 - utils/observables.py: defines a set of observable possibly calculated from a shower.
 11 - utils/plotter.py: defines plotting classes responsible for manufacturing various plots of observables.
 12 - train.py: performs model training.
 13 - generate.py: generate showers using a saved VAE model.
 14 - observables.py: defines a set of shower observables.
 15 - validate.py: creates validation plots using shower observables.
 16 - convert.py: defines the conversion function to an ONNX file.
 17 - tune_model.py: performs hyperparameters optimization.
 18 
 19 ## Getting Started
 20 
 21 `setup.py` script creates necessary folders used to save model checkpoints, generate showers and validation plots.
 22 
 23 ```
 24 python3 setup.py
 25 ``` 
 26 
 27 ## Full simulation dataset
 28 
 29 The full simulation dataset can be downloaded from/linked to [Zenodo](https://zenodo.org/record/6082201#.Ypo5UeDRaL4).
 30 
 31 If custom simulation is used, the output of full simulation must be translated to h5 files using `root2h5.py` script. Please see the header of that script to see what name of the root file is expected.
 32 
 33 ## Training
 34 
 35 In order to launch the training:
 36 
 37 ```
 38 python3 train.py
 39 ``` 
 40 
 41 You may specify those three following flags. If you do not, then default values will be used.
 42 
 43 ```--max-gpu-memory-allocation``` specifies a maximum memory allocation on a single, logic GPU unit. Should be given as
 44 an integer.
 45 
 46 ```--gpu-ids``` specifies IDs of physical GPUs. Should be given as a string, separated with comas, no spaces.
 47 If you specify more than one GPU then automatically ```tf.distribute.MirroredStrategy``` will be applied to the
 48 training.
 49 
 50 ```--study-name``` specifies a study name. This name is used as an experiment name in W&B dashboard and as a name of
 51 directory for saving models.
 52 
 53 ## Hyperparameters tuning
 54 
 55 If you want to tune hyperparameters, specify in `tune_model.py` parameters to be tuned. There are three types of
 56 parameters: discrete, continuous and categorical. Discrete and continuous require range specification (low, high), while
 57 the categorical parameter requires a list of possible values to be chosen. Then run it with:
 58 
 59 ```
 60 python3 tune_model.py
 61 ```
 62 
 63 If you want to parallelize tuning process you need to specify a common storage (preferable MySQL database) by
 64 setting `--storage="URL_TO_MYSQL_DATABASE"`. Then you can run multiple processes with the same command:
 65 
 66 ```
 67 python3 tune_model.py --storage="URL_TO_MYSQL_DATABASE"
 68 ```
 69 
 70 Similarly to training procedure, you may specify ```--max-gpu-memory-allocation```, ```--gpu-ids``` and
 71 ```--study-name```.
 72 
 73 ## ML shower generation (MLFastSim)
 74 
 75 In order to generate showers using the ML model, use `generate.py` script and specify information of geometry, energy
 76 and angle of the particle and the epoch of the saved checkpoint model. The number of events to generate can also be
 77 specified (by default is set to 10.000):
 78 
 79 ```
 80 python3 generate.py --geometry=SiW --energy=64 --angle=90 --epoch=1000 --study-name=YOUR_STUDY_NAME
 81 ``` 
 82 
 83 If you do not specify an epoch number the based model (saved as ```VAEbest```) will be used for shower generation.
 84 
 85 ## Validation
 86 
 87 In order to validate the MLFastSim and the full simulation, use `validate.py` script and specify information of
 88 geometry, energy and angle of the particle:
 89 
 90 ```
 91 python3 validate.py --geometry=SiW --energye=64 --angle=90 
 92 ``` 
 93 
 94 ## Conversion
 95 
 96 After training and validation, the model can be converted into a format that can be used in C++, such as ONNX,
 97 use `convert.py` script:
 98 
 99 ```
100 python3 convert.py --epoch 1000
101 ```