Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 /// \file parallel/ThreadsafeScorers/include/TSDetectorConstruction.hh 27 /// \brief Definition of the TSDetectorConstruction class 28 // 29 // 30 // 31 // 32 /// Construction of a target material (default = boron) surrounded by a 33 /// casing material (default = water) and a vacuum world (default = 34 /// target and casing fill world). The target + casing is brick 35 /// geometry with fTargetSections defining the number of divisions 36 /// in each dimension. The end sections in each dimension 37 /// is set to the casing. So a fTargetSections = G4ThreeVector(3, 3, 3) 38 /// would be one section of boron and 8 sections of water. 39 /// The idea behind this geometry is just to create a simple geometry that 40 /// scatters and produces a lot neutrons with a minimal number of sections 41 /// (i.e. coarse meshing) such that the contention in operating on 42 /// the atomic hits maps is higher and round-off errors in the 43 /// thread-local hits maps are detectable (printed out in TSRunAction) 44 /// from the sheer number of floating point sum operations. 45 /// Two scorers are implemented: EnergyDeposit and Number of steps 46 /// The energy deposit is to (possibly) show the round-off error seen 47 /// with thread-local hits maps. The # of steps scorer is to verify 48 /// the thread-safe and thread-local hits maps provide the same results. 49 // 50 // 51 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 52 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 53 54 #ifndef tsdetectorconstruction_hh 55 #define tsdetectorconstruction_hh 1 56 57 #include "G4ThreeVector.hh" 58 #include "G4VUserDetectorConstruction.hh" 59 #include "globals.hh" 60 61 #include <map> 62 #include <set> 63 64 class G4Box; 65 class G4Tubs; 66 class G4Sphere; 67 class G4LogicalVolume; 68 class G4VPhysicalVolume; 69 class G4Material; 70 71 class TSDetectorConstruction : public G4VUserDetectorConstruction 72 { 73 public: 74 typedef std::map<G4String, G4Material*> MaterialCollection_t; 75 typedef std::set<G4LogicalVolume*> ScoringVolumes_t; 76 77 public: 78 TSDetectorConstruction(); 79 virtual ~TSDetectorConstruction(); 80 81 static TSDetectorConstruction* Instance(); 82 83 public: 84 G4VPhysicalVolume* Construct(); 85 inline const G4ThreeVector& GetWorldDimensions() const { return fWorldDim; } 86 inline const ScoringVolumes_t& GetScoringVolumes() const { return fScoringVolumes; } 87 inline const G4String& GetMFDName() const { return fMfdName; } 88 inline G4int GetTotalTargets() const 89 { 90 return fTargetSections.x() * fTargetSections.y() * fTargetSections.z(); 91 } 92 93 protected: 94 virtual MaterialCollection_t ConstructMaterials(); 95 virtual G4VPhysicalVolume* ConstructWorld(const MaterialCollection_t&); 96 virtual void ConstructSDandField(); 97 98 private: 99 static TSDetectorConstruction* fgInstance; 100 G4VPhysicalVolume* fWorldPhys; 101 ScoringVolumes_t fScoringVolumes; 102 G4String fWorldMaterialName; 103 G4String fTargetMaterialName; 104 G4String fCasingMaterialName; 105 G4ThreeVector fWorldDim; 106 G4ThreeVector fTargetDim; 107 G4ThreeVector fTargetSections; 108 G4String fMfdName; 109 }; 110 111 #endif 112