Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/medical/fanoCavity2/src/MyMollerBhabhaModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 /// \file medical/fanoCavity2/src/MyMollerBhabhaModel.cc
 27 /// \brief Implementation of the MyMollerBhabhaModel class
 28 //
 29 //
 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 32 
 33 #include "MyMollerBhabhaModel.hh"
 34 
 35 #include "G4PhysicalConstants.hh"
 36 #include "G4SystemOfUnits.hh"
 37 
 38 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 39 
 40 using namespace std;
 41 
 42 MyMollerBhabhaModel::MyMollerBhabhaModel(const G4ParticleDefinition* p, const G4String& nam)
 43   : G4MollerBhabhaModel(p, nam)
 44 {}
 45 
 46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 47 
 48 MyMollerBhabhaModel::~MyMollerBhabhaModel() {}
 49 
 50 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 51 
 52 G4double MyMollerBhabhaModel::ComputeDEDXPerVolume(const G4Material* material,
 53                                                    const G4ParticleDefinition* p,
 54                                                    G4double kineticEnergy, G4double cutEnergy)
 55 {
 56   if (!particle) SetParticle(p);
 57   // calculate the dE/dx due to the ionization by Seltzer-Berger formula
 58 
 59   G4double electronDensity = material->GetElectronDensity();
 60   G4double Zeff = electronDensity / material->GetTotNbOfAtomsPerVolume();
 61   G4double th = 0.25 * sqrt(Zeff) * keV;
 62   G4double tkin = kineticEnergy;
 63   G4bool lowEnergy = false;
 64   if (kineticEnergy < th) {
 65     tkin = th;
 66     lowEnergy = true;
 67   }
 68   G4double tau = tkin / electron_mass_c2;
 69   G4double gam = tau + 1.0;
 70   G4double gamma2 = gam * gam;
 71   G4double beta2 = 1. - 1. / gamma2;
 72   // G4double bg2   = beta2*gamma2;
 73 
 74   G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy();
 75   eexc /= electron_mass_c2;
 76   G4double eexc2 = eexc * eexc;
 77 
 78   G4double d = min(cutEnergy, MaxSecondaryEnergy(p, tkin)) / electron_mass_c2;
 79   G4double dedx;
 80 
 81   // electron
 82   if (isElectron) {
 83     dedx = log(2.0 * (tau + 2.0) / eexc2) - 1.0 - beta2 + log((tau - d) * d) + tau / (tau - d)
 84            + (0.5 * d * d + (2.0 * tau + 1.) * log(1. - d / tau)) / gamma2;
 85 
 86     // positron
 87   }
 88   else {
 89     G4double d2 = d * d * 0.5;
 90     G4double d3 = d2 * d / 1.5;
 91     G4double d4 = d3 * d * 3.75;
 92     G4double y = 1.0 / (1.0 + gam);
 93     dedx =
 94       log(2.0 * (tau + 2.0) / eexc2) + log(tau * d)
 95       - beta2 * (tau + 2.0 * d - y * (3.0 * d2 + y * (d - d3 + y * (d2 - tau * d3 + d4)))) / tau;
 96   }
 97 
 98   // do not apply density correction
 99   // G4double cden  = material->GetIonisation()->GetCdensity();
100   // G4double mden  = material->GetIonisation()->GetMdensity();
101   // G4double aden  = material->GetIonisation()->GetAdensity();
102   // G4double x0den = material->GetIonisation()->GetX0density();
103   // G4double x1den = material->GetIonisation()->GetX1density();
104   // G4double x     = log(bg2)/twoln10;
105 
106   // if (x >= x0den) {
107   //   dedx -= twoln10*x - cden;
108   //   if (x < x1den) dedx -= aden*pow(x1den-x, mden);
109   // }
110 
111   // now you can compute the total ionization loss
112   dedx *= twopi_mc2_rcl2 * electronDensity / beta2;
113   if (dedx < 0.0) dedx = 0.0;
114 
115   // lowenergy extrapolation
116 
117   if (lowEnergy) {
118     if (kineticEnergy >= lowLimit)
119       dedx *= sqrt(tkin / kineticEnergy);
120     else
121       dedx *= sqrt(tkin * kineticEnergy) / lowLimit;
122   }
123   return dedx;
124 }
125 
126 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
127