Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/medical/fanoCavity2/

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Name Size       Last modified (GMT) Description
Back Parent directory       2024-12-05 15:16:16
Folder include/       2024-12-05 15:16:16
Folder src/       2024-12-05 15:16:16
File CMakeLists.txt 2172 bytes       2024-12-05 15:16:16
File GNUmakefile 542 bytes       2024-12-05 15:16:16
File History 8055 bytes       2024-12-05 15:16:16
File README 6026 bytes       2024-12-05 15:16:16
File basic.mac 323 bytes       2024-12-05 15:16:16
File essai.mac 161 bytes       2024-12-05 15:16:16
C++ file fanoCavity2.cc 3971 bytes       2024-12-05 15:16:16
File fanoCavity2.in 265 bytes       2024-12-05 15:16:16
File fanoCavity2.out 18530 bytes       2024-12-05 15:16:16
File plotHisto.C 852 bytes       2024-12-05 15:16:16
File plotHisto.kumac 159 bytes       2024-12-05 15:16:16
File run01.mac 1080 bytes       2024-12-05 15:16:16
File stepfunction.mac 324 bytes       2024-12-05 15:16:16
File vis.mac 2027 bytes       2024-12-05 15:16:16

  1 -------------------------------------------------------------------
  2 
  3      =========================================================
  4      Geant4 - an Object-Oriented Toolkit for Simulation in HEP
  5      =========================================================
  6 
  7                             fanoCavity2
  8                             -----------
  9 
 10     This program computes the dose deposited in an ionization chamber by an
 11     extended (one dimensional) monoenergetic electron source.
 12     The geometry of the chamber satisfies the conditions of charged particle
 13     equilibrium. Hence, under idealized conditions, the ratio of the dose 
 14     deposited over the beam energy fluence must be equal to 1.
 15     This variante of the Fano cavity test make use of an reciprocity theorem.
 16     
 17     J.Sempau and P.Andreo, Phys. Med. Biol. 51 (2006) 3533        
 18  
 19  1- GEOMETRY
 20  
 21     The chamber is modelized as a cylinder with a cavity in it.
 22     
 23     5 parameters define the geometry :
 24       - the radius of the chamber (must be big)
 25       - the material of the wall
 26       - the thickness of the wall
 27       - the material of the cavity
 28       - the thickness of the cavity
 29 
 30     Wall and cavity must be made of the same material, but with different
 31     density.
 32     Radius must be bigger than range of electrons in cavity.    
 33 
 34     All above parameters can be redifined via the UI commands built in 
 35     DetectorMessenger class.
 36 
 37                         _________________
 38      radius (infinite)  |     |   |     |
 39                         |     |   |     |
 40                         |     |   |     |
 41                         |     |   |     |
 42                         |     | <-+-----+--- cavity
 43                         |     |   |     |
 44                         |     |   |     |
 45                  ---------------------------- cylinder axis = e- source
 46                         |     |   |     |
 47                         |     |   |     |
 48                         |     |   |     |
 49                         |wall |   |wall |
 50                         |     |   |     |
 51                         |     |   |     |
 52                         |     |   |     |
 53                         -----------------
 54 
 55  2- BEAM
 56   
 57     Monoenergetic (E0) incident electron source is uniformly distribued along
 58     cylinder axis, within wall and cavity, with constant lineic density
 59     per mass: I.
 60     An effective wall thickness is defined from the range of e- at energy E0.
 61      
 62     Beam_energy_fluence is E0*I
 63     
 64  3- PURPOSE OF THE PROGRAM
 65     
 66     The program computes the dose deposited in the cavity and the ratio
 67     Dose/Beam_energy_fluence. This ratio must be 1.
 68  
 69     The program needs high statistic to reach precision on the computed dose.
 70     The UI command /run/printProgress allows to survey the convergence of
 71     the dose calculation.
 72     
 73     The simplest way to study the effect of e- tracking parameters on dose 
 74     deposition is to use the command /testem/stepMax.
 75     
 76  4- PHYSICS
 77  
 78     The physics list contains the standard electromagnetic processes, with few 
 79     modifications listed here.
 80     
 81     - Bremsstrahlung : Fano conditions imply no energy transfer via
 82     bremsstrahlung radiation. Therefore this process is not registered in the
 83     physics list. However, it is always possible to include it. 
 84     See PhysListEm classes.
 85     
 86     - Ionization : In order to have same stopping power in wall and cavity, one
 87     must cancel the density correction term in the dedx formula. This is done in
 88     a specific MollerBhabha model (MyMollerBhabhaModel) which inherites from 
 89     G4MollerBhabhaModel.
 90     
 91     To prevent explicit generation of delta-rays, the default production
 92     threshold (i.e. cut) is set to 10 km (CSDA condition).
 93     
 94     The finalRange of the step function is set to 10 um, which more on less
 95     correspond to a tracking cut in water of about 20 keV. See emOptions.
 96     Once again, the above parameters can be controled via UI commands.
 97     
 98     - Multiple scattering : is switched in single Coulomb scattering mode near
 99     boundaries. This is selected via EM options in PhysicsList, and can be
100     controled with UI commands.
101     
102     - All PhysicsTables are built with 100 bins per decade.  
103       
104  5- HISTOGRAMS
105  
106    fanoCavity2 has several predefined 1D histograms : 
107   
108       1 : emission point of e+-
109       2 : energy spectrum of e+-
110       3 : theta distribution of e+-
111       4 : emission point of e+- hitting cavity
112       5 : energy spectrum of e+- when entering in cavity
113       6 : theta distribution of e+- before enter in cavity
114       7 : theta distribution of e+- at first step in cavity      
115       8 : track segment of e+- in cavity
116       9 : step size of e+- in wall
117      10 : step size of e+- in cavity
118      11 : energy deposit in cavity per track
119    
120    The histograms are managed by G4AnalysisManager class and its Messenger. 
121    The histos can be individually activated with the command :
122    /analysis/h1/set id nbBins  valMin valMax unit 
123    where unit is the desired unit for the histo (MeV or keV, deg or mrad, etc..)
124    
125    One can control the name of the histograms file with the command:
126    /analysis/setFileName  name  (default fanocavity2)
127    
128    It is possible to choose the format of the histogram file : root (default),
129    hdf5, xml, csv, by changing the default file type in HistoManager.cc
130    
131    It is also possible to print selected histograms on an ascii file:
132    /analysis/h1/setAscii id
133    All selected histos will be written on a file name.ascii 
134    (default fanocavity2) 
135  
136  6- HOW TO START ?
137  
138     - execute fanoCavity2 in 'batch' mode from macro files
139         % fanoCavity2   run01.mac
140  
141     - execute fanoCavity2 in 'interactive mode' with visualization
142         % fanoCavity2
143         ....
144         Idle> type your commands
145         ....
146         Idle> exit
147 
148    Alternative macro files:
149    basic.mac - disabled  multiple scattering and fluctuations of energy loss
150    essai.mac - run WVI EM physics configuration 
151    stepfunction.mac - the step function optimisation using histogram