Version:
[ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]
1 =========================================================
2 Geant4 - range example
3 =========================================================
4
5 README file
6 ----------------------
7
8 CORRESPONDING AUTHOR
9
10 S. Incerti et al. (a, *)
11 a. LP2i, IN2P3 / CNRS / Bordeaux University, 33175 Gradignan, France
12 e-mail: incerti@lp2ib.in2p3.fr
13
14 ---->0. INTRODUCTION.
15
16 The range example shows how to calculate range of electrons
17 in liquid water using the Geant4-DNA physics processes and models.
18
19 It is adapted from svalue.
20
21 This example is provided by the Geant4-DNA collaboration.
22
23 These processes and models are further described at:
24 http://geant4-dna.org
25
26 Any report or published results obtained using the Geant4-DNA software shall
27 cite the following Geant4-DNA collaboration publications:
28 Med. Phys. 51 (2024) 5873–5889
29 Med. Phys. 45 (2018) e722-e739
30 Phys. Med. 31 (2015) 861-874
31 Med. Phys. 37 (2010) 4692-4708
32 Int. J. Model. Simul. Sci. Comput. 1 (2010) 157–178
33
34 ---->1. GEOMETRY SET-UP.
35
36 The geometry is a 1 m radius sphere of liquid water (G4_WATER
37 material). Particles are shot randomly from the sphere centre.
38
39 Radius of the sphere, physics constructor and energy can be
40 controlled by the range.in macro file.
41
42 ---->2. SET-UP
43
44 Make sure G4LEDATA points to the low energy electromagnetic data files.
45
46 The code can be compiled with cmake.
47
48 It works in MT mode.
49
50 ---->3. HOW TO RUN THE EXAMPLE
51
52 In interactive mode, run:
53
54 ./range range.in
55
56 The range.in macro allows a full control of the simulation.
57
58 The histo.in macro is also provided for the creation of histograms.
59
60 The computation of ranges is performed in the
61 TrackingAction::PostUserTrackingAction method. The computation
62 for electrons uses the primary particle track length and the computation
63 for incident particles undergoing Geant4-DNA charge exchange processes, such
64 as protons, hydrogen, alpha particles and their charge states, is specific.
65
66 ---->4. PHYSICS
67
68 You can select Geant4-DNA physics constructor in range.in.
69
70 A tracking cut can be applied if requested.
71
72 ---->5. SIMULATION OUTPUT AND RESULT ANALYSIS
73
74 The output results consist in a text file (range.txt), containing :
75 - energy of incident particles (in eV)
76 - track length of primary particle (in nm)
77 - rms of track length of primary particle (in nm)
78 - projected length of primary particle (in nm)
79 - rms of projected length of primary particle (in nm)
80 - penetration of primary particle (in nm)
81 - rms of penetration of primary particle (in nm)
82
83 Note: rms values correspond to standard deviation.
84
85 Results in this file can be displayed using the ROOT macro plot.C:
86 root plot.C