Version:
[ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]
1 *** microyz example ***
2
3 Author: S. Incerti et al.
4 Date: 1 June 2017
5 Email: incerti@lp2ib.in2p3.fr
6
7 (c) The Geant4-DNA collaboration.
8
9 This examples shows how to compute microdosimetry
10 distributions y, z in liquid water using exclusively Geant4-DNA
11 physics processes and models.
12
13 This example is provided by the Geant4-DNA collaboration.
14
15 These processes and models are further described at:
16 http://geant4-dna.org
17 and in
18 J. Appl. Phys. 122 (2017) 024303
19
20 Any report or published results obtained using the Geant4-DNA software shall
21 cite the following Geant4-DNA collaboration publications:
22 Med. Phys. 51 (2024) 5873–5889
23 Med. Phys. 45 (2018) e722-e739
24 Phys. Med. 31 (2015) 861-874
25 Med. Phys. 37 (2010) 4692-4708
26 Int. J. Model. Simul. Sci. Comput. 1 (2010) 157–178
27
28 1) Geometry
29 A box of liquid water.
30
31 2) Incident particles
32 Particles can be selected from the mycroyz.in macro
33 as well as their incident energy.
34 They are shot from the center of the box.
35
36 3) Physics
37 The default Geant4-DNA physics constructor 2 is used in
38 the PhysicsList class. Alternative constructor can be
39 selected from the macro file microyz.in.
40
41 Livermore and Penelope physics lists can be used as well.
42
43 Tracking cut and maximum step size can be selected in microyz.in
44
45 4) Scoring of enery deposition
46 Energy depositions are scored in spheres randomly
47 placed along the incident particle track,
48 using a weighted sampling.
49
50 The user can select the radius of the sphere in microyz.in using the command:
51 /microyz/det/Radius X unit
52 where X is the radius value and unit is specified.
53
54 5) The code can be run using:
55 ./microyz microyz.in
56
57 6) Results can be analyzed after the run using:
58 root plot.C
59
60 The distribution of y is shown by default.
61
62 The following quantities are calculated: yF and yD.