Version:
[ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]
1 *** microprox example ***
2
3 Author: S. Incerti et al.
4 Date: March 2nd, 2019
5 Email: incerti@lp2ib.in2p3.fr
6
7 (c) The Geant4-DNA collaboration.
8
9 This example shows how to compute proximity functions
10 in liquid water using exclusively Geant4-DNA
11 physics processes and models.
12
13 This example is provided by the Geant4-DNA collaboration.
14
15 These processes and models are further described at:
16 http://geant4-dna.org
17
18 Any report or published results obtained using the Geant4-DNA software shall
19 cite the following Geant4-DNA collaboration publications:
20 J. Appl. Phys. 125 (2019) 104301
21 Med. Phys. 51 (2024) 5873–5889
22 Med. Phys. 45 (2018) e722-e739
23 Phys. Med. 31 (2015) 861-874
24 Med. Phys. 37 (2010) 4692-4708
25 Int. J. Model. Simul. Sci. Comput. 1 (2010) 157–178
26
27 1) Geometry
28 An infinite box of liquid water.
29
30 2) Incident particles
31 Particles can be selected from the microprox.in macro
32 as well as their incident energy.
33 They are shot from the center of the box.
34 Tracking cut can also be selected (as energy).
35
36 3) Physics
37 The default Geant4-DNA physics constructor 2 is used in
38 the PhysicsList class. Alternative constructor can be
39 selected from microprox.in
40
41 4) Scoring of enery deposition
42 Energy depositions are scored in spherical shells from randomly selected hits.
43 The user can select the dimensions of the shells as well as radius steps in TrackerSD.cc.
44
45 5) The code can be run using:
46 ./microprox microprox.in
47
48 6) Results can be analyzed after the run using:
49 root plot.C
50
51 The distribution of t is shown by default.