Geant4 Cross Reference |
1 ========================================================= 2 Geant4 - microdosimetry example 3 ========================================================= 4 5 README file 6 ---------------------- 7 8 CORRESPONDING AUTHOR 9 10 S. Incerti (a, *), H. Tran (a, *), V. Ivantchenko (b), M. Karamitros 11 a. LP2i, IN2P3 / CNRS / Bordeaux University, 33175 Gradignan, France 12 b. G4AI Ltd., UK 13 * e-mail: incerti@lp2ib.in2p3.fr or tran@lp2ib.in2p3.fr 14 15 ---->0. INTRODUCTION 16 17 The microdosimetry example shows how to use Geant4 and Geant4-DNA physics models 18 in different regions of the geometry. 19 20 The Geant4-DNA processes and models are further described at: 21 http://geant4-dna.org 22 23 Any report or published results obtained using the Geant4-DNA software shall 24 cite the following Geant4-DNA collaboration publications: 25 Med. Phys. 51 (2024) 5873–5889 26 Med. Phys. 45 (2018) e722-e739 27 Phys. Med. 31 (2015) 861-874 28 Med. Phys. 37 (2010) 4692-4708 29 Int. J. Model. Simul. Sci. Comput. 1 (2010) 157–178 30 31 ---->1. GEOMETRY SET-UP 32 33 The geometry is a 10-micron side cube (World) made of liquid water (G4_WATER 34 material) containing a 2 micron-thick slice (along X) of water (Target). 35 36 Particles are shot from the World volume. 37 38 The variable density feature of materials is illustrated in DetectorConstruction. 39 The material can be changed directly in microdosimetry.in macro file. 40 41 ---->2. SET-UP 42 43 Make sure $G4LEDATA points to the low energy electromagnetic data files. 44 45 ---->3. HOW TO RUN THE EXAMPLE 46 47 In interactive mode, run: 48 49 ./microdosimetry 50 51 In batch, the macro microdosimetry.in can be used. It shows how to shoot different 52 particle types. 53 54 ---->4. PHYSICS 55 56 The PhysicsList uses Geant4 Physics in the World region and Geant4-DNA Physics 57 in the Target region. 58 59 1) Geant4 Physics in the World is selected via the command: 60 61 /dna/test/addPhysics X 62 63 where X is any EM physics list, such as emstandard_opt4 (see PhysicsList.cc). 64 65 2) Geant4-DNA activator is used in the regionTarget region using: 66 67 /process/em/AddDNARegion regionTarget DNA_OptY 68 69 where Y = 0, 2, 4, or 6. 70 71 3) In addition to 1) or 2), to enable radioactive decay, one can use: 72 73 /dna/test/addPhysics raddecay 74 75 4) Warning regarding ions: when the incident particle type is ion 76 (/gun/particle ion), specified with Z and A numbers (/gun/ion A Z), 77 the Rudd ionisation extended model is used. The particles are tracked 78 by default down to 0.5 MeV/u. This tracking cut can be bypassed using : 79 80 /dna/test/addIonsTrackingCut false 81 82 83 ---->5. SIMULATION OUTPUT AND RESULT ANALYSIS 84 85 The output results consists in a dna.root file, containing for each simulation step: 86 - the type of particle for the current step 87 - the type of process for the current step 88 - the step PostStepPoint coordinates (in nm) 89 - the energy deposit along the current step (in eV) 90 - the step length (in nm) 91 - the total energy loss along the current step (in eV) 92 - the kinetic energy at PreStepPoint (in eV) 93 - the cos of the scattering angle 94 - the event ID 95 - the track ID 96 - the parent track ID 97 - the step number 98 99 This information is extracted from the SteppingAction class. 100 101 The ROOT file can be easily analyzed using for example the provided ROOT macro 102 file plot.C; to do so : 103 * be sure to have ROOT installed on your machine 104 * be sure to be in the directory containing the ROOT files created by microdosimetry 105 * copy plot.C into this directory 106 * from there, launch ROOT by typing root 107 * under your ROOT session, type in : .X plot.C to execute the macro file 108 * alternatively you can type directly under your session : root plot.C 109 110 The naming scheme on the displayed ROOT plots is as follows (see SteppingAction.cc): 111 112 -particles 113 114 gamma: 0 115 e-: 1 116 proton: 2 117 hydrogen: 3 118 alpha: 4 119 alpha+: 5 120 helium: 6 121 122 -processes 123 124 Capture: 1 125 (only if one uses G4EmmicrodosimetryActivator in PhysicsList) 126 127 e-_G4DNAElectronSolvation: 10 128 e-_G4DNAElastic: 11 129 e-_G4DNAExcitation: 12 130 e-_G4DNAIonisation: 13 131 e-_G4DNAAttachment: 14 132 e-_G4DNAVibExcitation: 15 133 msc: 110 134 CoulombScat: 120 135 eIoni: 130 136 137 proton_G4DNAElastic: 21 138 proton_G4DNAExcitation: 22 139 proton_G4DNAIonisation: 23 140 proton_G4DNAChargeDecrease: 24 141 msc: 210 142 CoulombScat: 220 143 hIoni: 230 144 nuclearStopping: 240 145 146 hydrogen_G4DNAElastic: 31 147 hydrogen_G4DNAExcitation: 32 148 hydrogen_G4DNAIonisation: 33 149 hydrogen_G4DNAChargeIncrease: 35 150 151 alpha_G4DNAElastic: 41 152 alpha_G4DNAExcitation: 42 153 alpha_G4DNAIonisation: 43 154 alpha_G4DNAChargeDecrease: 44 155 msc: 410 156 CoulombScat: 420 157 ionIoni: 430 158 nuclearStopping: 440 159 160 alpha+_G4DNAElastic: 51 161 alpha+_G4DNAExcitation: 52 162 alpha+_G4DNAIonisation: 53 163 alpha+_G4DNAChargeDecrease: 54 164 alpha+_G4DNAChargeIncrease: 55 165 msc: 510 166 CoulombScat: 520 167 hIoni: 530 168 nuclearStopping: 540 169 170 helium_G4DNAElastic: 61 171 helium_G4DNAExcitation: 62 172 helium_G4DNAIonisation: 63 173 helium_G4DNAChargeIncrease: 65 174 175 GenericIon_G4DNAIonisation: 73 176 msc: 710 177 CoulombSca: 720 178 ionIoni: 730 179 nuclearStopping: 740 180 181 phot: 81 182 compt: 82 183 conv: 83 184 Rayl: 84 185 186 --------------------------------------------------------------------------- 187 188 Should you have any enquiry, please do not hesitate to contact: 189 incerti@lp2ib.in2p3.fr or tran@lp2ib.in2p3.fr