Version:
[ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]
1 =========================================================
2 Geant4 - mfp example
3 =========================================================
4
5 README file
6 ----------------------
7
8 CORRESPONDING AUTHOR
9
10 S. Incerti et al. (a, *)
11 a. LP2i, IN2P3 / CNRS / Bordeaux University, 33175 Gradignan, France
12 * e-mail: incerti@lp2ib.in2p3.fr
13
14 ---->0. INTRODUCTION.
15
16 The mfp example shows how to calculate mean free path of particles
17 in liquid water using the Geant4-DNA physics processes and models.
18
19 It has been adapted from the spower and TestEm14 examples.
20
21 This example is provided by the Geant4-DNA collaboration.
22
23 The Geant4-DNA processes and models are further described at:
24 http://geant4-dna.org
25
26 Any report or published results obtained using the Geant4-DNA software shall
27 cite the following Geant4-DNA collaboration publications:
28 Med. Phys. 51 (2024) 5873–5889
29 Med. Phys. 45 (2018) e722-e739
30 Phys. Med. 31 (2015) 861-874
31 Med. Phys. 37 (2010) 4692-4708
32 Int. J. Model. Simul. Sci. Comput. 1 (2010) 157–178
33
34 ---->1. GEOMETRY SET-UP.
35
36 The geometry is a 1 m radius sphere of liquid water (G4_WATER
37 material). Particles are shot along x from the sphere centre.
38
39 Radius of the sphere, physics constructor, primary particle type and
40 energy can be controlled by the mfp.in macro file.
41
42 ---->2. SET-UP
43
44 Make sure G4LEDATA points to the low energy electromagnetic data files.
45
46 The code can be compiled with cmake.
47
48 It works in MT mode.
49
50 ---->3. HOW TO RUN THE EXAMPLE
51
52 Use:
53
54 ./mfp mfp.in
55
56 The mfp.in macro allows a full control of the simulation.
57
58 The computation of MFP and other quantities is performed in the
59 SteppingAction::UserSteppingAction method.
60
61 The histo.in macro shows how to display several quantities
62 (energy spectrum, scattering angle along x) of primary and secondaries.
63
64 ---->4. PHYSICS
65
66 G4EmDNAPhysics* constructors are used.
67
68 ---->5. SIMULATION OUTPUT AND RESULT ANALYSIS
69
70 The output results consist in a text file (mfp.txt), containing:
71 - energy of incident particles (in eV)
72 - mfp (in nm)
73 - rms (i.e. standard deviation) on mfp (in nm)
74
75 Otherwise you may use histo.in to generate ROOT histograms of the
76 other quantities.