Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 /// \file medical/DICOM/include/DicomNestedPhantomParameterisation.hh 28 /// \brief Definition of the DicomNestedPhantomParameterisation class 29 // 30 31 #ifndef DICOMNESTEDPARAMETERISATION_HH 32 #define DICOMNESTEDPARAMETERISATION_HH 33 34 #include "G4ThreeVector.hh" 35 #include "G4Types.hh" 36 #include "G4VNestedParameterisation.hh" 37 #include "G4VTouchable.hh" 38 39 #include <map> 40 #include <vector> 41 42 class G4VPhysicalVolume; 43 class G4VSolid; 44 class G4Material; 45 class G4VisAttributes; 46 47 // CSG Entities which may be parameterised/replicated 48 // 49 class G4Box; 50 class G4Tubs; 51 class G4Trd; 52 class G4Trap; 53 class G4Cons; 54 class G4Sphere; 55 class G4Ellipsoid; 56 class G4Orb; 57 class G4Torus; 58 class G4Para; 59 class G4Polycone; 60 class G4Polyhedra; 61 class G4Hype; 62 63 /// Implements a G4VNestedParameterisation 64 65 class DicomNestedPhantomParameterisation : public G4VNestedParameterisation 66 { 67 public: 68 typedef std::map<G4String, G4VisAttributes*> ColourMap_t; 69 70 static G4String fDefaultColorFile; 71 72 public: 73 DicomNestedPhantomParameterisation(const G4ThreeVector& voxelSize, 74 std::vector<G4Material*>& mat, G4int fnZ_ = 0, 75 G4int fnY_ = 0, G4int fnX_ = 0, 76 G4String colorFile = fDefaultColorFile); 77 ~DicomNestedPhantomParameterisation(); 78 79 G4Material* ComputeMaterial(G4VPhysicalVolume* currentVol, const G4int repNo, 80 const G4VTouchable* parentTouch); 81 // Must cope with parentTouch for navigator's SetupHierarchy 82 83 G4int GetNumberOfMaterials() const; 84 G4Material* GetMaterial(G4int idx) const; 85 // Needed to define materials for instances of Nested Parameterisation 86 // Current convention: each call should return the materials 87 // of all instances with the same mother/ancestor volume 88 89 // unsigned int GetMaterialIndex( unsigned int nx, unsigned int ny, 90 // unsigned int nz) const; 91 unsigned int GetMaterialIndex(unsigned int copyNo) const; 92 void SetMaterialIndices(size_t* matInd) { fMaterialIndices = matInd; } 93 void SetNoVoxels(unsigned int nx, unsigned int ny, unsigned int nz); 94 95 void ComputeTransformation(const G4int no, G4VPhysicalVolume* currentPV) const; 96 97 // Additional standard Parameterisation methods, 98 // which can be optionally defined, in case solid is used. 99 void ComputeDimensions(G4Box&, const G4int, const G4VPhysicalVolume*) const; 100 101 const ColourMap_t& GetColourMap() const { return fColours; } 102 ColourMap_t& GetColourMap() { return fColours; } 103 104 private: // Dummy declarations to get rid of warnings ... 105 void ComputeDimensions(G4Trd&, const G4int, const G4VPhysicalVolume*) const {} 106 void ComputeDimensions(G4Trap&, const G4int, const G4VPhysicalVolume*) const {} 107 void ComputeDimensions(G4Cons&, const G4int, const G4VPhysicalVolume*) const {} 108 void ComputeDimensions(G4Sphere&, const G4int, const G4VPhysicalVolume*) const {} 109 void ComputeDimensions(G4Ellipsoid&, const G4int, const G4VPhysicalVolume*) const {} 110 void ComputeDimensions(G4Orb&, const G4int, const G4VPhysicalVolume*) const {} 111 void ComputeDimensions(G4Torus&, const G4int, const G4VPhysicalVolume*) const {} 112 void ComputeDimensions(G4Para&, const G4int, const G4VPhysicalVolume*) const {} 113 void ComputeDimensions(G4Hype&, const G4int, const G4VPhysicalVolume*) const {} 114 void ComputeDimensions(G4Tubs&, const G4int, const G4VPhysicalVolume*) const {} 115 void ComputeDimensions(G4Polycone&, const G4int, const G4VPhysicalVolume*) const {} 116 void ComputeDimensions(G4Polyhedra&, const G4int, const G4VPhysicalVolume*) const {} 117 118 void ReadColourData(G4String); 119 120 using G4VNestedParameterisation::ComputeMaterial; 121 122 private: 123 G4double fdX, fdY, fdZ; 124 G4int fnX, fnY, fnZ; 125 std::vector<G4Material*> fMaterials; 126 size_t* fMaterialIndices; // Index in materials corresponding to each voxel 127 ColourMap_t fColours; 128 std::map<G4int, G4VisAttributes*> fColours2; 129 std::vector<G4double> fpZ; 130 }; 131 132 #endif 133