Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/hadronic/Hadr06/README

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 
  2      =========================================================
  3      Geant4 - an Object-Oriented Toolkit for Simulation in HEP
  4      =========================================================
  5 
  6                             Hadr06
  7                             ------
  8 
  9    Survey energy deposition and particle's flux from an hadronic cascade.
 10    Use PhysicsConstructor objects rather than predefined G4 PhysicsLists.   
 11 
 12   
 13  1- MATERIALS AND GEOMETRY DEFINITION
 14  
 15    The geometry is a single sphere (absorber) of an homogenous material.
 16     
 17    Two parameters define the geometry :
 18   - the radius of the sphere     
 19   - the material of the sphere
 20   
 21    The default geometry (R=30 cm of water) is built in 
 22    DetectorConstruction, but the above parameters can be changed interactively 
 23    via commands defined in DetectorMessenger.
 24    
 25    The absorber is surrounded by a World volume (vacuum)
 26    
 27    A function, and its associated UI command, allows to build a material
 28    directly from a single isotope.
 29    
 30    To be identified by the ThermalScattering module, the elements composing a
 31    material must have a specific name (see G4ParticleHPThermalScatteringNames.cc)
 32    Examples of such materials are build in DetectorConstruction.
 33   
 34  2- PHYSICS LIST
 35    
 36   "Full" set of physics processes are registered, but via PhysicsConstructor
 37   objects rather than complete pre-defined G4 physics lists. This alternative 
 38   way gives more freedom to register physics.
 39 
 40   Physics constructors are either constructors provided in Geant4 (with G4 prefix)
 41   or 'local'. They include : HadronElastic, HadronInelastic, IonsInelastic, GammaNuclear,
 42   RadioactiveDecay and Electomagnetic.
 43   (see geant4/source/physics_lists/constructors)
 44 
 45   HadronElasticPhysicsHP include a model for thermalized neutrons, under the control of a command
 46   defined in NeutronHPMesseger.
 47 
 48   GammmaNuclearPhysics is a subset of G4BertiniElectroNuclearBuilder.
 49 
 50   ElectromagneticPhysics is a simplified version of G4EmStandardPhysics.
 51 
 52   Several hadronic physics options are controlled by environment variables.
 53   To trigger them, see Hadr06.cc
 54    
 55  3- AN EVENT : THE PRIMARY GENERATOR
 56  
 57    The primary kinematic is a single particle randomly shooted at the 
 58    centre of the sphere. The type of the particle and its energy are set in 
 59    PrimaryGeneratorAction (neutron 14 MeV), and can be changed via the G4 
 60    build-in commands of ParticleGun class (see the macros provided with 
 61    this example).
 62   
 63  4- PHYSICS
 64 
 65    The program computes and plots energy deposited in the interaction volume
 66    (absorber) and the flux of particles leaving this volume.
 67    Processes invoked and particles generated during hadronic cascade are listed.
 68 
 69  5- HISTOGRAMS
 70          
 71    The test contains 24 built-in 1D histograms:  
 72    
 73             1     "total energy deposit"
 74             2     "Edep (MeV/mm) profile along radius"      
 75             3     "total kinetic energy flow"
 76             4     "energy spectrum of gamma at creation"
 77             5     "energy spectrum of e+- at creation"
 78             6     "energy spectrum of neutrons at creation"
 79             7     "energy spectrum of protons at creation"
 80             8     "energy spectrum of deuterons at creation"
 81             9     "energy spectrum of alphas at creation"
 82             10    "energy spectrum of all others ions at creation"
 83             11    "energy spectrum of all others baryons at creation"
 84             12    "energy spectrum of all others mesons at creation"
 85             13    "energy spectrum of all others leptons (neutrinos) at creation"
 86             14    "energy spectrum of emerging gamma"
 87             15    "energy spectrum of emerging e+-"
 88             16    "energy spectrum of emerging neutrons"
 89             17    "energy spectrum of emerging protons"
 90             18    "energy spectrum of emerging deuterons"
 91             19    "energy spectrum of emerging alphas"
 92             20    "energy spectrum of all others emerging ions"
 93             21    "energy spectrum of all others emerging baryons"
 94             22    "energy spectrum of all others emerging mesons"
 95             23    "energy spectrum of all others emerging leptons (neutrinos)"
 96             24    "total energy released : edep + eflow"      
 97             
 98    The histograms are managed by the HistoManager class and its Messenger. 
 99    The histos can be individually activated with the command :
100    /analysis/h1/set id nbBins  valMin valMax unit 
101    where unit is the desired unit for the histo (MeV or keV, cm or mm, etc..)
102    
103    One can control the name of the histograms file with the command:
104    /analysis/setFileName  name  (default Hadr06)
105    
106    It is possible to choose the format of the histogram file : root (default),
107    xml, csv, by using namespace in HistoManager.hh
108        
109    It is also possible to print selected histograms on an ascii file:
110    /analysis/h1/setAscii id
111    All selected histos will be written on a file name.ascii (default Hadr04) 
112           
113  6- VISUALIZATION
114  
115    The Visualization Manager is set in the main().
116    The initialisation of the drawing is done via the commands
117    /vis/... in the macro vis.mac. To get visualisation:
118    > /control/execute vis.mac
119   
120    The tracks are drawn at the end of event, and erased at the end of run.   
121    gamma green   
122    neutron yellow
123    negative particles (e-, ...) red
124    positive particles (e+, ions, ...) blue
125   
126  7- HOW TO START ?
127  
128    Execute Hadr06 in 'batch' mode from macro files :
129   % Hadr06   run1.mac
130     
131    Execute Hadr06 in 'interactive mode' with visualization :
132   % Hadr06
133   Idle> control/execute vis.mac
134   ....
135   Idle> type your commands
136   ....
137   Idle> exit
138   
139  Macros provided in this example:
140   - hadr06.in: macro used in Geant4 testing to produce hadr06.out
141   - graphite.mac: neutron,14 MeV, in graphite
142   - run1.mac: neutron,14 MeV, in Li7
143   - singleFission.mac: single fission in U235
144   
145   Macros to be run interactively:
146   - debug.mac: water with thermal scattering
147   - fission.mac: U235
148   - vis.mac: To activate visualization
149