Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/hadronic/Hadr01/

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Name Size       Last modified (GMT) Description
Back Parent directory       2024-12-05 15:16:16
Folder include/       2024-12-05 15:16:16
Folder src/       2024-12-05 15:16:16
File CMakeLists.txt 2103 bytes       2024-12-05 15:16:16
File GNUmakefile 438 bytes       2024-12-05 15:16:16
C++ file Hadr01.cc 5419 bytes       2024-12-05 15:16:16
File History 10651 bytes       2024-12-05 15:16:16
File README 5181 bytes       2024-12-05 15:16:16
File antip.in 533 bytes       2024-12-05 15:16:16
File dmeson.in 575 bytes       2024-12-05 15:16:16
File elec.in 546 bytes       2024-12-05 15:16:16
File hadr01.in 596 bytes       2024-12-05 15:16:16
File hadr01.out 34831 bytes       2024-12-05 15:16:16
File hyper.in 597 bytes       2024-12-05 15:16:16
File neutronGP.in 725 bytes       2024-12-05 15:16:16
File p_pb.in 641 bytes       2024-12-05 15:16:16
File p_w.in 626 bytes       2024-12-05 15:16:16
File raddecay.in 640 bytes       2024-12-05 15:16:16
File run.csh 378 bytes       2024-12-05 15:16:16
File tau.in 390 bytes       2024-12-05 15:16:16
File test_battery.in 555 bytes       2024-12-05 15:16:16
File testion.in 558 bytes       2024-12-05 15:16:16
File testmu.in 581 bytes       2024-12-05 15:16:16
File vis.mac 2103 bytes       2024-12-05 15:16:16

  1      =========================================================
  2      Geant4 - an Object-Oriented Toolkit for Simulation in HEP
  3      =========================================================
  4 
  5 
  6                                  HADR01
  7 
  8             A.Bagulya, I.Gudowska, V.Ivanchenko, N.Starkov
  9                        CERN, Geneva, Switzerland
 10             Karolinska Institute & Hospital, Stockholm, Sweden
 11                Lebedev Physical Institute, Moscow, Russia
 12 
 13 
 14 This example application is based on the application IION developed for
 15 simulation of proton or ion beam interaction with a water target. Different 
 16 aspects of beam target interaction are demonstrating in the example including 
 17 longitudinal profile of energy deposition, spectra of secondary  particles,
 18 spectra of particles leaving the target. The results are presenting in a form
 19 of average numbers and histograms. 
 20 
 21 
 22                            GEOMETRY
 23 
 24 The Target volume is a cylinder placed inside Check cylindrical volume. The 
 25 Check volume is placed inside the World volume. The radius and the length of
 26 the Check volume are 1 mm larger than the radius and the length of the Target.
 27 The material of the Check volume is the same as the World material.  The World
 28 volume has the sizes 10 mm larger than that of the Target volume.  Any material
 29 from the Geant4 database can be defined. The default World  material is
 30 G4Galactic and the default  Target material is aluminum. The Target is
 31 subdivided on number of equal slices. Following UI commands are available to
 32 modify the geometry:
 33 
 34 /testhadr/TargetMat     G4_Pb
 35 /testhadr/WorldMat      G4_AIR
 36 /testhadr/TargetRadius  10 mm
 37 /testhadr/TargetLength  20 cm
 38 /testhadr/NumberDivZ    200
 39 
 40 Beam direction coincides with the target axis and is Z axis in the global
 41 coordinate system. The beam starts 5 mm in front of the target. G4ParticleGun
 42 is used as a primary generator. The energy and the type of the beam can be
 43 defined via standard UI commands
 44 
 45 /gun/energy   15 GeV
 46 /gun/particle proton
 47 
 48 Default beam position is -(targetHalfLength + 5*mm) and direction along Z axis.
 49 Beam position and direction can be changed by gun UI commands:
 50 
 51 /gun/position  1 10 3 mm
 52 /gun/direction 1 0 0
 53 
 54 however, position command is active only if before it the flag is set
 55 
 56 /testhadr/DefaultBeamPosition false   
 57  
 58                            SCORING
 59 
 60 The scoring is performed with the help of UserStackingAction class and two
 61 sensitive detector  classes: one associated with a target slice, another with
 62 the Check volume. Each secondary particle is scored by the StackingAction.  In
 63 the StackingAction it is also possible to kill all or one type of secondary 
 64 particles 
 65 
 66 /testhadr/Kill             neutron
 67 /testhadr/KillAllSecondaries  
 68 
 69 To control running the following options are available:
 70 
 71 /testhadr/PrintModulo      100
 72 /testhadr/DebugEvent       977
 73 
 74 The last command selects an events, for which "/tracking/verbose 2" level
 75 of printout is established.
 76 
 77 
 78                            PHYSICS
 79 
 80 PhysicsList of the application uses reference Phsyics Lists or its components, 
 81 which are distributed with Geant4 in /geant4/physics_lists subdirectory.
 82 
 83 The reference Physics List name may be defined in the 3d argument of the 
 84 run command: 
 85 
 86 Hadr01 my.macro QGSP_BERT   
 87 
 88 If 3d argument is not set then the PHYSLIST environment variable is checked. 
 89 If 3d argument is set, it is possible to add the 4th and 5th arguments,
 90 which defines overlap energies between cascade and string models in GeV:
 91 
 92 Hadr01 my.macro QGSP_BERT 3.5 8.0
 93 
 94 If 6 arguments are used the last enabling addition of charge exchange 
 95 physics on top of any reference Physics List.
 96 
 97 Hadr01 my.macro QGSP_BERT 3.5 8.0 CI
 98 
 99 If both 3d argument and the environment variable are not defined then 
100 reference Phsyics Lists is not instantiated, instead the local Physics List 
101 is used built from components, which may be configured using UI interface.
102 The choice of the physics is provided by the UI command:
103 
104 /testhadr/Physics     QGSP_BIC
105 
106 To see the list of available configurations with UI one can use
107 
108 /testhadr/ListPhysics
109 
110 The cuts for electromagnetic physics can be established via
111 
112 /testhadr/CutsAll       1 mm
113 /testhadr/CutsGamma   0.1 mm
114 /testhadr/CutsEl      0.2 mm
115 /testhadr/CutsPos     0.3 mm
116 /testhadr/CutsProt    0.6 mm
117 
118 Note that testhadr UI commands are not available in the case when PHYSLIST 
119 environment variable is defined. 
120 
121 
122                           VISUALIZATION
123 
124 For interactive mode G4 visualization options and variables should be
125 defined, then the example should be recompiled:
126 
127 gmake visclean
128 gmake
129 
130 
131                           HISTOGRAMS
132 
133 There are built in histograms. The 1st one (idx=0, id="1") scores energy
134 deposition along the target. Histograms "22", "23", "24", "25" scores
135 energy deposition per particle type.
136  
137 All other histograms are provided in decimal logarithmic scale (log10(E/MeV),
138 where E is secondary particle energy at production
139 
140 It is possible to change scale and output file name using UI commands:
141 
142 /testhadr/histo/fileName name
143 /testhadr/histo/setHisto idx nbins vmin vmax unit
144 
145 Only ROOT histograms are available.
146 
147 All histograms are normalized to the number of events.