Version:
[ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]
1 -----------------------------------------------------
2
3 =========================================================
4 Geant4 - an Object-Oriented Toolkit for Simulation in HEP
5 =========================================================
6
7 TestEm5
8 -------
9 How to study the transmission, absorption and reflection of particles through
10 a single, thin or thick, layer of material.
11 In particular, the effects of the multiple scattering can be plotted.
12
13 1- GEOMETRY DEFINITION
14
15 The "absorber" is a box made of a given material.
16
17 Three parameters define the absorber :
18 - the material of the absorber,
19 - the thickness of an absorber,
20 - the transverse size of the absorber (the input face is a square).
21
22 A volume "World" contains the "absorber".
23
24 In addition a transverse uniform magnetic field can be applied.
25
26 The default geometry is constructed in DetectorConstruction class, but all the
27 parameters can be changed via commands defined in the DetectorMessenger class.
28 The parameters of the "World" can be changed, too. However, if World material
29 is not set to vacuum, the plots 10->43 below may be not pertinent.
30
31 2- PHYSICS LIST
32
33 Physics lists are based on modular design. Several modules are instantiated:
34 1. Transportation
35 2. EM physics
36 3. Decays
37 4. StepMax - for step limitation
38
39 EM physics builders can be local (eg. in this example) or from G4 kernel
40 physics_lists subdirectory.
41
42 Local physics builders:
43 - "local" standard EM physics with current 'best' options setting
44 these options are explicited in PhysListEmStandard
45 - "standardSSM" standard EM physics with alternative single Coulomb
46 scattering model instead of multiple scattering.
47
48 From geant4/source/physics_lists/builders:
49 - "emstandard_opt0" recommended standard EM physics for LHC
50 - "emstandard_opt1" best CPU performance standard physics for LHC
51 - "emstandard_opt2" similar fast simulation
52 - "emstandard_opt3" best standard EM options - analog to "local" above
53 - "emstandard_opt4" best current advanced EM options standard + lowenergy
54 - "emstandardWVI" standard EM physics and WentzelVI multiple scattering
55 - "emstandardSS" standard EM physics and single scattering model
56 - "emlivermore" low-energy EM physics using Livermore data
57 - "empenelope" low-energy EM physics implementing Penelope models
58 - "emlowenergy" low-energy EM physics implementing experimental
59 low-energy models
60
61 Physics lists and options can be (re)set with UI commands
62
63 Please, notice that options set through G4EmProcessOptions are global, eg
64 for all particle types. In G4 builders, it is shown how to set options per
65 particle type.
66
67 3- AN EVENT : THE PRIMARY GENERATOR
68
69 The primary kinematic consists of a single particle which hits the absorber
70 perpendicular to the input face, so the default beam direction is along X
71 axis. The type of the particle and its energy are set in the
72 PrimaryGeneratorAction class, and can be changed via the G4 build-in
73 commands of G4ParticleGun class (see the macros provided with this example).
74
75 If thickness of absorber is changed for some run in the same macro, then
76 gun position should be modifined using /gun/position IU command.
77
78 4- VISUALIZATION
79
80 The Visualization Manager is set in the main().
81 The initialisation of the drawing is done via the commands in vis.mac
82 In interactive session:
83 PreInit or Idle > /control/execute vis.mac
84
85 The example has a default view which is a longitudinal view of the detector.
86
87 The tracks are drawn at the end of event, and erased at the end of run.
88 Optionally one can choose to draw all particles, only the charged, or none.
89 This command is defined in EventActionMessenger class.
90
91 5- TRACKING
92
93 During the tracking, one can keep or not the secondaries : see StackingAction
94 class and its Messenger (StackingMessenger).
95 One can also limit 'by hand' the step lenght of the particle. As an example,
96 this limitation is implemented as a 'full' process : see StepMax class and its
97 Messenger. The 'StepMax process' is registered in the Physics List.
98
99 6- DETECTOR RESPONSE
100
101 At the end of a run, from the histogram(s), one can study different
102 physics quantities such as :
103 - energy deposit in the absorber,
104 - energy spectrum of secondaries at creation,
105 - energy spectrum and angle distribution of particles at exit,
106 - transmission and backscattering coefficients,
107 - ...
108
109 7- List of the built-in histograms
110 ----------------------------------
111
112 The test contains more than 60 built-in 1D histograms, which are managed by
113 G4AnalysisManager class and its Messenger. The histos can be individually activated
114 with the command :
115 /analysis/h1/set id nbBins valMin valMax unit
116 where unit is the desired unit for the histo (MeV or keV, deg or mrad, etc..)
117 (see the macros xxxx.mac).
118
119 1 "energy deposit in absorber"
120 2 "energy of charged secondaries at creation"
121 3 "energy of neutral secondaries at creation"
122 4 "energy of charged at creation (log10(Ekin))"
123 5 "energy of neutral at creation (log10(Ekin))"
124 6 "x_vertex of charged secondaries (all)"
125 7 "x_vertex of charged secondaries (not absorbed)"
126 10 "(transmit, charged) : kinetic energy at exit of world"
127 11 "(transmit, charged) : ener fluence: dE(MeV)/dOmega"
128 12 "(transmit, charged) : space angle dN/dOmega"
129 13 "(transmit, charged) : projected angle at exit of world"
130 14 "(transmit, charged) : projected position at exit of world"
131 15 "(transmit, charged) : radius at exit of world"
132 20 "(transmit, neutral) : kinetic energy at exit of world"
133 21 "(transmit, neutral) : ener fluence: dE(MeV)/dOmega"
134 22 "(transmit, neutral) : space angle dN/dOmega"
135 23 "(transmit, neutral) : projected angle at exit of world"
136 30 "(reflect , charged) : kinetic energy at exit of world"
137 31 "(reflect , charged) : ener fluence: dE(MeV)/dOmega"
138 32 "(reflect , charged) : space angle dN/dOmega"
139 33 "(reflect , charged) : projected angle at exit of world"
140 40 "(reflect , neutral) : kinetic energy at exit of world"
141 41 "(reflect , neutral) : ener fluence: dE(MeV)/dOmega"
142 42 "(reflect , neutral) : space angle dN/dOmega"
143 43 "(reflect , neutral) : projected angle at exit of world"
144 50 "energy of Auger e- at creation"
145 51 "energy of fluorescence gamma at creation"
146 52 "energy of Auger e- at creation (log scale)"
147 53 "energy of fluorescence gamma at creation (log scale)"
148 54 "energy of PIXE Auger e- at creation"
149 55 "energy of PIXE gamma at creation"
150 56 "energy of PIXE Auger e- at creation (log scale)"
151 57 "energy of PIXE gamma at creation (log scale)"
152 58 "energy of G4DNA Auger e- at creation"
153 59 "energy of G4DNA gamma at creation"
154 60 "energy of G4DNA Auger e- at creation (log scale)"
155 61 "energy of G4DNA gamma at creation (log scale)"
156
157 One can control the name of the histograms file with the command:
158 /analysis/setFileName name (default testem5)
159
160 It is possible to choose the format of the histogram file : root (default),
161 hdf5, xml, csv, by changing the default file type in HistoManager.cc
162
163 It is also possible to print selected histograms on an ascii file:
164 /analysis/h1/setAscii id
165 All selected histos will be written on a file name.ascii (default testem5)
166
167 8- GEANT4/GEANT3/DATA COMPARISON
168
169 A Geant4/Geant3/exp. data comparison is given here for a few cases.
170 These cases can be classified as follow:
171 - e-/e+ incident particles versus protons and others.
172 - 3 energy regimes: low: < 1MeV; medium: 1MeV -> few 10MeV; high: > 100MeV
173
174 We indicate here the corresponding macros.
175
176 | low energy | medium energy | high energy
177 --------------------------------------------------------
178 | acosta.mac | |
179 e-+ | berger.mac | hanson.mac |
180 | hunger.mac | kulchi.mac |
181 | tavola.mac | |
182 --------------------------------------------------------
183 others| bichsel.mac | vincour.mac | shen1.mac shen2.mac
184 | | gottsch.mac | tramu.mac
185 --------------------------------------------------------
186
187 9- HOW TO START ?
188
189 - Execute TestEm5 in 'batch' mode from macro files e.g.
190 % $(G4INSTALL)/bin/$(G4SYSTEM)/TestEm5 myMacro.mac
191
192 - Execute TestEm5 in 'interactive' mode with visualization e.g.
193 % $(G4INSTALL)/bin/$(G4SYSTEM)/TestEm5
194 Then type your commands, for instance :
195 Idle> control/execute vis.mac
196 Idle> run/beamOn 5
197 ....
198
199 Macros provided in this example:
200 - acosta.mac: Back x-ray emission by 20 keV electrons in Silver.
201 (E. Acosta et al. Journal of Applied Physics 83(11) 1998 page 6038,
202 Fig. 4-5-6)
203 - anthony.mac: LPM and dielectric effect measurement: 25 GeV electrons
204 through thin foils.
205 (P.L. Anthony et al. Phys.Rev. D 56 (1997) page 1373.)
206 - atima.mac: to test PhysListEm19DStandard for ions
207 - berger.mac: Energy deposit by 1 MeV electrons in silicon counters.
208 (M.J.Berger et al. NIM 69 (1969) page 181.)
209 - bichsel.mac: 0.766 MeV protons, transmitted through 1.37 mg/cm2 Al
210 (H.Bichsel Phys.Rev. 112 (1958) page 182.)
211 - dedx1.mac: to control dE/dx calculation.
212 - dedx2.mac: to control dE/dx calculation. High statistic and plot
213 - dna.mac: to illustrate DNA physics
214 - fluo.mac: to illustrate atomic deexcitation options
215 - gammaSpectrum.mac: to plot gamma spectrum with/without atomic deexcitation.
216 - geom.mac: to play with geometry (can be run interactively with visualization)
217 - gottsch.mac: 158.6 MeV protons, transmitted through 0.2160 g/cm2 Al
218 (B.Gottschalk et al. NIM B74 (1993) page 467.)
219 - hanson.mac: Angle distribution of 15.7 MeV electrons transmitted through
220 thin gold foils.
221 (A.O.Hanson et al. Phys.Rev.84 (1951) page 634.)
222 - hunger.mac: Back scattering of 41 keV electrons.
223 (H.J. Hunger and L. Kuchler Phys. Stat. Sol.(a) 56, K45 (1979))
224 - ion.mac: ion C12 in 1m Iron
225 - kulchi.mac: 2.25 MeV e-, transmitted through 26.60 mg/cm2 Al
226 (L.Kulchitsky Phys.Rev. 61 (1941) page 254.)
227 - mumsc.mac: 100 GeV mu+, transmitted through 1 m of iron
228 - mutev.mac: 1 TeV mu+, transmitted through 1 m of iron
229 - pixe.mac: to illustrate atomic deexcitation options
230 - pixe_ANSTO.mac: to illustrate how to activate the ANSTO PIXE data libraries,
231 for both cross sections and fluorescence radiation yields (for materials with Z < 93).
232 The cross sections are available for protons with energy < 5 MeV
233 and alpha particles with energy < 10 MeV/nucleon.
234 (S. Bakr et al. (2021) NIM B, 507:1119),
235 (S. Bakr et al (2018), NIMB B, 436: 285-291)
236 - posi.mac: to test PhysListEm19DStandard for positron
237 - shen1.mac: Angle distribution of high energy (50-200 GeV/c) protons
238 transmitted through different targets.
239 (G. Shen et al. Phys.Rev. D20 (1979) page 1584.)
240 - shen2.mac: proton 175 GeV/c, transmitted through 8.004 mm Al
241 (G. Shen et al. Phys.Rev. D20 (1979) page 1584.)
242 - stepMax.mac: to test the command /testem/stepMax
243 - tavora.mac: Back scattering of 35 keV electrons in Silver.
244 (L.M. Tavora et al. J.Phys.D: Appl. Phys. 33 (2000) page 2497,
245 Fig. 7)
246 - tramu.mac: 1 TeV mu+, transmitted through 3 m of iron
247 (Rev. of Particle Physics Eur. Phys. Jour. C (2000) page 172.
248 Rev. of Particle Physics Letters B 592 (2004) page 251.)
249 - vincour.mac: Angle distribution of 6.56 MeV protons transmitted through
250 thin silicon targets.
251 (J.Vincour,P.Bem NIM 148 (1978) page 396.)
252 - vis.mac - to activate visualization