Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/electromagnetic/TestEm15/README

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 -------------------------------------------------------------------
  2 
  3      =========================================================
  4      Geant4 - an Object-Oriented Toolkit for Simulation in HEP
  5      =========================================================
  6 
  7                             TestEm15
  8                             --------
  9 
 10         How to compute and plot the final state of:
 11    - Multiple Scattering
 12    - Gamma Conversion
 13   considered as an isolated processes, see PHYSICS.
 14 
 15   For Multiple Scattering, the method is exposed below.
 16 
 17   For Gamma Conversion, when G4BetheHeitler5DModel Model is used,
 18   see README.gamma for Histograms and UI commands description.
 19 
 20  1- GEOMETRY DEFINITION
 21 
 22         It is a single box representing a 'semi infinite' homogeneous medium.
 23         Two parameters define the geometry:
 24         - the material of the box,
 25         - the (full) size of the box.
 26 
 27         The default geometry (100 m of water) is constructed in
 28         DetectorConstruction, but the above parameters can be changed
 29         interactively via the commands defined in DetectorMessenger.
 30 
 31  2- PHYSICS LIST
 32 
 33         The physics list contains the standard electromagnetic processes.
 34         In order not to introduce 'artificial' constraints on the step size,
 35         there is no limitation from the maximum energy lost per step.
 36 
 37  3- AN EVENT: THE PRIMARY GENERATOR
 38 
 39         The primary kinematic consists of a single particle starting at the edge
 40         of the box. The type of the particle and its energy are set in
 41         PrimaryGeneratorAction (1 MeV electron), and can be changed via the G4
 42         build-in commands of ParticleGun class (see the macros provided with
 43         this example).
 44 
 45  4- PHYSICS
 46 
 47         All discrete processes are inactivated (see provided macros),
 48         so that Multiple Scattering or Gamma Conversion is 'forced' to
 49         determine the first step of the primary particle.
 50         The step size and the final state are computed  and plotted.
 51         Then the event is immediately killed.
 52 
 53   Multiple Scattering:
 54 
 55   The result is compared with the 'input' data, i.e. with the cross
 56         sections stored in the PhysicsTables and used by Geant4.
 57         The stepMax command provides an additional control of the step size of
 58         the multiple scattering.
 59 
 60 
 61  5- HISTOGRAMS
 62 
 63         The test contains 16 built-in 1D histograms, which are managed by
 64         G4AnalysisManager and its Messenger. The histos can be individually
 65         activated with the command:
 66         /analysis/h1/set id nbBins  valMin valMax unit
 67         where unit is the desired unit for the histo (MeV or keV, etc..)
 68         (see the macros xxxx.mac).
 69 
 70         1       Multiple Scattering. True step length
 71         2       Multiple Scattering. Geom step length
 72         3       Multiple Scattering. Ratio geomSl/trueSl
 73         4       Multiple Scattering. Lateral displacement: radius
 74         5       Multiple Scattering. Lateral displac: psi_space
 75         6       Multiple Scattering. Angular distrib: theta_plane
 76         7       Multiple Scattering. Phi-position angle
 77         8       Multiple Scattering. Phi-direction angle
 78         9       Multiple Scattering. Correlation: cos(phiPos-phiDir)
 79 
 80         10      Gamma Conversion. Open Angle * Egamma
 81         11      Gamma Conversion. Log10(P recoil)
 82         12      Gamma Conversion. Phi P recoil angle
 83         13      Gamma Conversion. Phi P plus angle
 84         14      Gamma Conversion. 2 * cos(phiplus + phiminus) Asymmetry
 85         15      Gamma Conversion. E plus / E gamma
 86         16      Gamma Conversion. Phi of Gamma Polarization
 87 
 88 
 89    The histograms are managed by the HistoManager class and its Messenger.
 90    The histos can be individually activated with the command:
 91    /analysis/h1/set id nbBins  valMin valMax unit
 92    where unit is the desired unit for the histo (MeV or keV, deg or mrad, etc..)
 93 
 94    One can control the name of the histograms file with the command:
 95    /analysis/setFileName  name  (default testem15)
 96 
 97    It is possible to choose the format of the histogram file : root (default),
 98    hdf5, xml, csv, by changing the default file type in HistoManager.cc
 99 
100    It is also possible to print selected histograms on an ascii file:
101    /analysis/h1/setAscii id
102    All selected histos will be written on a file name.ascii (default testem15)
103 
104  6- VISUALIZATION
105 
106         The Visualization Manager is set in the main().
107         The initialization of the drawing is done via the commands
108         /vis/... in the macro vis.mac. To get visualization:
109         > /control/execute vis.mac
110 
111         The detector has a default view which is a longitudinal view of the
112         box.
113 
114         The tracks are drawn at the end of event, and erased at the end of run.
115 
116  7- HOW TO START ?
117 
118         execute TestEm15 in 'batch' mode from macro files:
119                 % TestEm15   compt.mac
120 
121         execute TestEm15 in 'interactive mode' with visualization:
122                 % TestEm15
123                 Idle> control/execute vis.mac
124                 ....
125                 Idle> type your commands
126                 ....
127                 Idle> exit
128 
129 8 - MACROS
130        The examples of macros for Multiple Scattering:
131        electron.mac muon.mac  proton.mac
132 
133        The example of Gamma Conversion macro:
134        gamma.mac - gamma to e+ e-
135        gamma2mumu.mac gamma to mu+ mu-