Version:
[ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]
1 -------------------------------------------------------------------
2
3 =========================================================
4 Geant4 - an Object-Oriented Toolkit for Simulation in HEP
5 =========================================================
6
7 TestEm15
8 --------
9
10 How to compute and plot the final state of:
11 - Multiple Scattering
12 - Gamma Conversion
13 considered as an isolated processes, see PHYSICS.
14
15 For Multiple Scattering, the method is exposed below.
16
17 For Gamma Conversion, when G4BetheHeitler5DModel Model is used,
18 see README.gamma for Histograms and UI commands description.
19
20 1- GEOMETRY DEFINITION
21
22 It is a single box representing a 'semi infinite' homogeneous medium.
23 Two parameters define the geometry:
24 - the material of the box,
25 - the (full) size of the box.
26
27 The default geometry (100 m of water) is constructed in
28 DetectorConstruction, but the above parameters can be changed
29 interactively via the commands defined in DetectorMessenger.
30
31 2- PHYSICS LIST
32
33 The physics list contains the standard electromagnetic processes.
34 In order not to introduce 'artificial' constraints on the step size,
35 there is no limitation from the maximum energy lost per step.
36
37 3- AN EVENT: THE PRIMARY GENERATOR
38
39 The primary kinematic consists of a single particle starting at the edge
40 of the box. The type of the particle and its energy are set in
41 PrimaryGeneratorAction (1 MeV electron), and can be changed via the G4
42 build-in commands of ParticleGun class (see the macros provided with
43 this example).
44
45 4- PHYSICS
46
47 All discrete processes are inactivated (see provided macros),
48 so that Multiple Scattering or Gamma Conversion is 'forced' to
49 determine the first step of the primary particle.
50 The step size and the final state are computed and plotted.
51 Then the event is immediately killed.
52
53 Multiple Scattering:
54
55 The result is compared with the 'input' data, i.e. with the cross
56 sections stored in the PhysicsTables and used by Geant4.
57 The stepMax command provides an additional control of the step size of
58 the multiple scattering.
59
60
61 5- HISTOGRAMS
62
63 The test contains 16 built-in 1D histograms, which are managed by
64 G4AnalysisManager and its Messenger. The histos can be individually
65 activated with the command:
66 /analysis/h1/set id nbBins valMin valMax unit
67 where unit is the desired unit for the histo (MeV or keV, etc..)
68 (see the macros xxxx.mac).
69
70 1 Multiple Scattering. True step length
71 2 Multiple Scattering. Geom step length
72 3 Multiple Scattering. Ratio geomSl/trueSl
73 4 Multiple Scattering. Lateral displacement: radius
74 5 Multiple Scattering. Lateral displac: psi_space
75 6 Multiple Scattering. Angular distrib: theta_plane
76 7 Multiple Scattering. Phi-position angle
77 8 Multiple Scattering. Phi-direction angle
78 9 Multiple Scattering. Correlation: cos(phiPos-phiDir)
79
80 10 Gamma Conversion. Open Angle * Egamma
81 11 Gamma Conversion. Log10(P recoil)
82 12 Gamma Conversion. Phi P recoil angle
83 13 Gamma Conversion. Phi P plus angle
84 14 Gamma Conversion. 2 * cos(phiplus + phiminus) Asymmetry
85 15 Gamma Conversion. E plus / E gamma
86 16 Gamma Conversion. Phi of Gamma Polarization
87
88
89 The histograms are managed by the HistoManager class and its Messenger.
90 The histos can be individually activated with the command:
91 /analysis/h1/set id nbBins valMin valMax unit
92 where unit is the desired unit for the histo (MeV or keV, deg or mrad, etc..)
93
94 One can control the name of the histograms file with the command:
95 /analysis/setFileName name (default testem15)
96
97 It is possible to choose the format of the histogram file : root (default),
98 hdf5, xml, csv, by changing the default file type in HistoManager.cc
99
100 It is also possible to print selected histograms on an ascii file:
101 /analysis/h1/setAscii id
102 All selected histos will be written on a file name.ascii (default testem15)
103
104 6- VISUALIZATION
105
106 The Visualization Manager is set in the main().
107 The initialization of the drawing is done via the commands
108 /vis/... in the macro vis.mac. To get visualization:
109 > /control/execute vis.mac
110
111 The detector has a default view which is a longitudinal view of the
112 box.
113
114 The tracks are drawn at the end of event, and erased at the end of run.
115
116 7- HOW TO START ?
117
118 execute TestEm15 in 'batch' mode from macro files:
119 % TestEm15 compt.mac
120
121 execute TestEm15 in 'interactive mode' with visualization:
122 % TestEm15
123 Idle> control/execute vis.mac
124 ....
125 Idle> type your commands
126 ....
127 Idle> exit
128
129 8 - MACROS
130 The examples of macros for Multiple Scattering:
131 electron.mac muon.mac proton.mac
132
133 The example of Gamma Conversion macro:
134 gamma.mac - gamma to e+ e-
135 gamma2mumu.mac gamma to mu+ mu-