Geant4 Cross Reference |
1 //*********************************************************************************************************** 2 // Concatenate_BinToStd_GammaAtExit.C 3 // Root command file 4 // Type: root Concatenate_BinToStd_GammaAtExit.C 5 // 6 // It is used in case of one interruption 7 // Read 2 output files GammaAtExit_1.dat and GammaAtExit_2.dat that are generated by Geant4 8 // tomography simulation It reads gamma at exit information, and rewrite the events in a binary file 9 // PixeEvent_std_AtExit.DAT 10 // 11 // More information is available in UserGuide 12 // Created by Z.LI LP2i Bordeaux 2022 13 //*********************************************************************************************************** 14 15 #include <math.h> 16 #include <stdint.h> 17 #include <stdio.h> 18 #include <string.h> 19 20 #include <vector> 21 // using namespace std; 22 23 // Define a structure to read and write each event in the required binary format 24 struct PixeEvent 25 { 26 uint16_t energy_10eV; 27 uint16_t pixelIndex; 28 uint16_t sliceIndex; 29 uint8_t projectionIndex; 30 }; 31 struct ParticleInfo 32 { 33 float energy_keV; 34 float mx; 35 float my; 36 float mz; 37 }; 38 struct RunInfo 39 { 40 // uint_16t 41 uint8_t projectionIndex; // 1 byte 42 uint16_t sliceIndex; // 43 uint16_t pixelIndex; 44 uint32_t nbParticle; // 4 bytes int 45 }; 46 47 struct Point 48 { 49 double m_x; 50 double m_y; 51 double m_z; 52 }; 53 bool IsDetected(Point poi1, Point poi2, double theta) 54 { 55 double a = (poi1.m_x * poi2.m_x + poi1.m_y * poi2.m_y + poi1.m_z * poi2.m_z) 56 / sqrt(poi1.m_x * poi1.m_x + poi1.m_y * poi1.m_y + poi1.m_z * poi1.m_z) 57 / sqrt(poi2.m_x * poi2.m_x + poi2.m_y * poi2.m_y + poi2.m_z * poi2.m_z); 58 if (a > 1.0) a = 1; 59 if (a < -1.0) a = -1; 60 double r = acos(a); 61 if (r > theta) 62 return false; 63 else 64 return true; 65 } 66 void Concatenate_BinToStd_GammaAtExit() 67 { 68 //*********************************************************************** 69 //**************************Detection parameters (begin)***************** 70 //*********************************************************************** 71 72 const int nbProjection = 10; 73 const int nbSlice = 1; 74 const int nbPixel = 20; 75 double totalAngleSpan = 180.; // in degree 76 77 double angleOfDetector = 78 135.; // angle of detector relative to the incident direction of the primary protons // 79 double distanceObjectDetector = 22.; // 22 mm 80 double radiusOfDetector = 5.; // 5 mm 81 // double theta = atan(radiusOfDetector/distanceObjectDetector); //half apex angle of the right 82 // circular cone in radian 83 double theta = 70 * TMath::DegToRad(); // in radian 84 85 int P_interrupt = 6; // Projection of interruption 86 87 //*********************************************************************** 88 //**************************Detection parameters (end)******************* 89 //*********************************************************************** 90 91 // assuming there is one interruption 92 FILE* input1 = fopen("../build/GammaAtExit_1.dat", "rb"); 93 FILE* input2 = fopen("../build/GammaAtExit_2.dat", "rb"); 94 FILE* out = fopen("../build/PixeEvent_std_AtExit.DAT", "wb"); 95 96 if (input1 == NULL) { 97 printf("error for opening the input GammaAtExit_1.dat file\n"); 98 return; 99 } 100 if (input2 == NULL) { 101 printf("error for opening the input GammaAtExit_2.dat file\n"); 102 return; 103 } 104 105 RunInfo runInfo; 106 PixeEvent pixeEvent; 107 Point centerOfDetector; 108 Point gammaMomentum; 109 long long count1 = 0; 110 long long count2 = 0; 111 int runID = -1; // index of simulations, namely runID, starting from 0 112 113 // ************************************************************ 114 // **********************READ FIRST FILE (begin)*************** 115 // ************************************************************ 116 while (fread(&runInfo, sizeof(RunInfo), 1, input1)) { 117 runID++; 118 119 runInfo.projectionIndex = runID / (nbSlice * nbPixel); 120 int remain = runID % (nbSlice * nbPixel); 121 runInfo.sliceIndex = remain / nbPixel; 122 runInfo.pixelIndex = remain % nbPixel; 123 124 if (runInfo.projectionIndex == P_interrupt) { 125 runID--; 126 break; 127 } 128 int nbParticle = runInfo.nbParticle; 129 130 //*********************************************************************** 131 //**************************Print information (begin)******************** 132 //*********************************************************************** 133 134 printf("-1--runId %d, ProjectionIndex=%d, SliceIndex=%d, PixelIndex=%d, nbParticle = %d\n", 135 runID, runInfo.projectionIndex, runInfo.sliceIndex, runInfo.pixelIndex, nbParticle); 136 137 //*********************************************************************** 138 //**************************Print information (end)********************** 139 //*********************************************************************** 140 141 if (!nbParticle) continue; 142 143 std::vector<ParticleInfo> gammaAtExit(nbParticle); 144 fread(&gammaAtExit[0], sizeof(ParticleInfo), nbParticle, input1); 145 146 // if(runInfo.sliceIndex!=1) continue; 147 // if(runInfo.sliceIndex!=31&&runInfo.sliceIndex!=32) continue; 148 // if(runInfo.sliceIndex!=31) continue; 149 150 // angleOfDetector+totalAngleSpan/nbProjection*runInfo.projectionIndex means the angle between 151 // source direction and detector, which should be constant when source is rotating 152 double ra = TMath::DegToRad() 153 * (angleOfDetector + totalAngleSpan / nbProjection * runInfo.projectionIndex); 154 centerOfDetector.m_x = distanceObjectDetector * cos(ra); 155 centerOfDetector.m_y = distanceObjectDetector * sin(ra); 156 centerOfDetector.m_z = 0; 157 158 for (int i = 0; i < nbParticle; ++i) { 159 // gamma selection: energy should be lower than 4095*10eV = 49.45 keV 160 if (gammaAtExit[i].energy_keV >= 40.95 || gammaAtExit[i].energy_keV <= 0.9) 161 continue; // gamma selection 162 163 gammaMomentum.m_x = gammaAtExit[i].mx; 164 gammaMomentum.m_y = gammaAtExit[i].my; 165 gammaMomentum.m_z = gammaAtExit[i].mz; 166 167 if (!IsDetected(centerOfDetector, gammaMomentum, theta)) 168 continue; 169 else { 170 pixeEvent.energy_10eV = floor(100 * gammaAtExit[i].energy_keV + 0.5); 171 pixeEvent.projectionIndex = runInfo.projectionIndex; 172 pixeEvent.sliceIndex = runInfo.sliceIndex; 173 pixeEvent.pixelIndex = runInfo.pixelIndex; 174 fwrite(&pixeEvent, 7, 1, out); 175 count1++; 176 } 177 } 178 } 179 printf("---------------Number of PixeEvent in the first file: %lld------------------------\n", 180 count1); 181 fclose(input1); 182 183 // ************************************************************ 184 // **********************READ FIRST FILE (end)***************** 185 // ************************************************************ 186 187 // ************************************************************ 188 // **********************READ SECOND FILE (begin)************** 189 // ************************************************************ 190 while (fread(&runInfo, sizeof(RunInfo), 1, input2)) { 191 runID++; 192 193 runInfo.projectionIndex = runID / (nbSlice * nbPixel); 194 int remain = runID % (nbSlice * nbPixel); 195 runInfo.sliceIndex = remain / nbPixel; 196 runInfo.pixelIndex = remain % nbPixel; 197 198 int nbParticle = runInfo.nbParticle; 199 200 //*********************************************************************** 201 //**************************Print information (begin)******************** 202 //*********************************************************************** 203 204 printf("-2--runId %d, ProjectionIndex=%d, SliceIndex=%d, PixelIndex=%d, nbParticle = %d\n", 205 runID, runInfo.projectionIndex, runInfo.sliceIndex, runInfo.pixelIndex, nbParticle); 206 207 //*********************************************************************** 208 //**************************Print information (end)********************** 209 //*********************************************************************** 210 211 if (!nbParticle) continue; 212 std::vector<ParticleInfo> gammaAtExit(nbParticle); 213 fread(&gammaAtExit[0], sizeof(ParticleInfo), nbParticle, input2); 214 215 // if(runInfo.sliceIndex!=1) continue; 216 // if(runInfo.sliceIndex!=31&&runInfo.sliceIndex!=32) continue; 217 // if(runInfo.sliceIndex!=31) continue; 218 219 // angleOfDetector+totalAngleSpan/nbProjection*runInfo.projectionIndex means the angle between 220 // source direction and detector, which should be constant when source is rotating 221 double ra = TMath::DegToRad() 222 * (angleOfDetector + totalAngleSpan / nbProjection * runInfo.projectionIndex); 223 centerOfDetector.m_x = distanceObjectDetector * cos(ra); 224 centerOfDetector.m_y = distanceObjectDetector * sin(ra); 225 centerOfDetector.m_z = 0; 226 227 for (int i = 0; i < nbParticle; ++i) { 228 // gamma selection: energy should be lower than 4095*10eV = 49.45 keV 229 if (gammaAtExit[i].energy_keV >= 40.95 || gammaAtExit[i].energy_keV <= 0.9) 230 continue; // gamma selection 231 232 gammaMomentum.m_x = gammaAtExit[i].mx; 233 gammaMomentum.m_y = gammaAtExit[i].my; 234 gammaMomentum.m_z = gammaAtExit[i].mz; 235 236 if (!IsDetected(centerOfDetector, gammaMomentum, theta)) 237 continue; 238 else { 239 pixeEvent.energy_10eV = floor(100 * gammaAtExit[i].energy_keV + 0.5); 240 pixeEvent.projectionIndex = runInfo.projectionIndex; 241 pixeEvent.sliceIndex = runInfo.sliceIndex; 242 pixeEvent.pixelIndex = runInfo.pixelIndex; 243 fwrite(&pixeEvent, 7, 1, out); 244 count2++; 245 } 246 } 247 } 248 printf("---------------Number of PixeEvent in in the second file: %lld------------------------\n", 249 count2); 250 251 // ************************************************************ 252 // **********************READ SECOND FILE (end)**************** 253 // ************************************************************ 254 255 printf("---------------Number of PixeEvent in total: %lld------------------------\n", 256 count1 + count2); 257 fclose(input2); 258 fclose(out); 259 260 // Recheck the output file in case 261 // FILE* input2 = fopen("PixeEvent_std_AtExit.DAT","rb"); 262 // PixeEvent p; 263 // while(fread(&p, 7, 1, input2)) 264 // { 265 // printf("__ProjectionIndex=%d, SliceIndex=%d, PixelIndex=%d, Energy_10eV=%d\n", 266 // p.projectionIndex, p.sliceIndex, p.pixelIndex, p.energy_10eV); 267 268 // } 269 // fclose(input2); 270 } 271