Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/advanced/nanobeam/src/DetectorConstruction.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // Please cite the following paper if you use this software
 27 // Nucl.Instrum.Meth.B260:20-27, 2007
 28 //
 29 // Based on purging magnet advanced example.
 30 //
 31 
 32 #include "DetectorConstruction.hh"
 33 
 34 #include "G4PhysicalConstants.hh"
 35 #include "G4SystemOfUnits.hh"
 36 #include "G4NistManager.hh"
 37 #include "G4RunManager.hh" 
 38 
 39 // Field
 40 #include "G4Mag_UsualEqRhs.hh"
 41 #include "G4TransportationManager.hh"
 42 #include "G4ClassicalRK4.hh"
 43 #include "G4PropagatorInField.hh"
 44 
 45 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 46 
 47 G4ThreadLocal TabulatedField3D* DetectorConstruction::fField = 0;
 48 
 49 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 50 
 51 DetectorConstruction::DetectorConstruction()
 52 { 
 53  fDetectorMessenger = new DetectorMessenger(this);
 54  
 55  // Default values (square field, coef calculation, profile)
 56  
 57  fModel=1;
 58  fG1=-11.964623; 
 59  fG2=16.494652; 
 60  fG3=9.866770; 
 61  fG4=-6.244493; 
 62  fCoef=0; 
 63  fProfile=1; 
 64  fGrid=0;
 65 
 66 }  
 67 
 68 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 69 
 70 DetectorConstruction::~DetectorConstruction()
 71 { delete fDetectorMessenger;}
 72 
 73 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 74 
 75 G4VPhysicalVolume* DetectorConstruction::Construct()
 76 
 77 {
 78   DefineMaterials();
 79   return ConstructVolumes();
 80 }
 81 
 82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 83 
 84 void DetectorConstruction::DefineMaterials()
 85 { 
 86   G4String name, symbol;             
 87   G4double density;            
 88   
 89   G4double z, a;
 90 
 91   // Vacuum standard definition...
 92   density = universe_mean_density;
 93   G4Material* vacuum = new G4Material(name="Vacuum", z=1., a=1.01*g/mole,
 94   density);
 95 
 96   // NIST
 97   G4NistManager *man=G4NistManager::Instance();
 98   man->SetVerbose(1);
 99 
100   //
101   
102   G4cout << G4endl << *(G4Material::GetMaterialTable()) << G4endl;
103 
104   // Default materials in setup.
105   fDefaultMaterial = vacuum;
106   fGridMaterial = man->FindOrBuildMaterial("G4_Ni"); 
107 }
108 
109 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
110 
111 G4VPhysicalVolume* DetectorConstruction::ConstructVolumes()
112 {
113 
114   fSolidWorld = new G4Box("World",        //its name
115          12*m/2,12*m/2,22*m/2);   //its size
116   
117 
118   fLogicWorld = new G4LogicalVolume(fSolidWorld,  //its solid
119             fDefaultMaterial, //its material
120             "World");   //its name
121   
122   fPhysiWorld = new G4PVPlacement(0,      //no rotation
123            G4ThreeVector(), //at (0,0,0)
124                                  "World",   //its name
125                                  fLogicWorld,   //its logical volume
126                                  NULL,      //its mother  volume
127                                  false,     //no boolean operation
128                                  0);      //copy number
129 
130 
131   // MAGNET VOLUME 
132 
133   fSolidVol = new G4Box("Vol",        //its name
134          10*m/2,10*m/2,9.120*m/2);    //its size
135   
136 
137   fLogicVol = new G4LogicalVolume(fSolidVol,          //its solid
138           fDefaultMaterial, //its material
139           "Vol");   //its name
140   
141   fPhysiVol = new G4PVPlacement(0,      //no rotation
142            G4ThreeVector(0,0,-4310*mm), //at (0,0,0)
143                                  "Vol",     //its name
144                                  fLogicVol,   //its logical volume
145                                  fPhysiWorld,   //its mother  volume
146                                  false,     //no boolean operation
147                                  0);      //copy number
148 
149   // GRID
150   
151   if (fGrid==1)
152   {
153   
154   G4cout << G4endl;
155   
156   G4cout << " ********************** " << G4endl;
157   G4cout << " **** GRID IN PLACE *** " << G4endl;
158   G4cout << " ********************** " << G4endl;
159 
160   G4double x_grid=5.0*mm;    
161   G4double y_grid=5.0*mm;
162   G4double grid_Zpos=(250+200)*mm;      // 250+10 mm for object size of 50µm diam
163 
164   //G4double thickness_grid=10*micrometer;
165   G4double thickness_grid=100*micrometer;
166 
167   G4double z_grid=thickness_grid/2.0; 
168 
169   fSolidGridVol= new G4Box("GridVolume",x_grid,y_grid,z_grid);   //its size
170   
171   fLogicGridVol = new G4LogicalVolume(fSolidGridVol,      //its solid
172               fGridMaterial,            //its material
173               "GridVolume");    //its name
174   
175   fPhysiGridVol = new G4PVPlacement(0,        //no rotation
176            G4ThreeVector(0,0,grid_Zpos),  // origin
177                                  fLogicGridVol,     //its logical volume
178                                  "GridVolume",      //its name
179                                  fLogicWorld,           //its mother  volume
180                                  false,       //no boolean operation
181                                  0);  
182 
183   // Holes in grid
184   
185   G4double holeSize= 9e-3*mm;
186   G4double pix_grid=1.3e-2*mm;
187   G4int    num_half_grid=100;
188 
189   fSolidGridVol_Hole= new G4Box("GridHole",holeSize/2,holeSize/2,z_grid);   //its size
190   
191   fLogicGridVol_Hole = new G4LogicalVolume(fSolidGridVol_Hole,        //its solid
192            fDefaultMaterial,                        //its material
193            "GridHole");                       //its name
194 
195  
196   for(int i=-num_half_grid;i<num_half_grid;i++)
197   {
198       for (int j=-num_half_grid;j<num_half_grid;j++)
199   {
200 
201         G4double  x0_grid,y0_grid,z0_grid;
202         G4int  number_index_grid;
203 
204         x0_grid=pix_grid*i;
205         y0_grid=pix_grid*j;
206         z0_grid=0.0*mm;
207 
208     number_index_grid=(i+num_half_grid)*1000+(j+num_half_grid);
209 
210       fPhysiGridVol_Hole  = new G4PVPlacement(0,    //no rotation
211            G4ThreeVector(x0_grid,y0_grid,z0_grid),//origin
212                                  fLogicGridVol_Hole,      //its logical volume
213                  "GridHole",        //its name
214                                  fLogicGridVol,             //its mother  volume
215                                  false,         //no boolean operation
216                                  number_index_grid);
217   } 
218   }
219 
220   // Grid imaging plane
221   
222   G4double ContVolSizeXY = 1*m;
223   G4double ImPlaneWidth = 0.001*mm;
224  
225   fSolidControlVol_GridShadow =
226     new G4Box
227     ("ControlVol_GridShadow", ContVolSizeXY/2, ContVolSizeXY/2 , ImPlaneWidth/2);
228  
229   fLogicControlVol_GridShadow = 
230     new G4LogicalVolume
231     (fSolidControlVol_GridShadow, fDefaultMaterial, "ControlVol_GridShadow");
232   
233   fPhysiControlVol_GridShadow = 
234     new G4PVPlacement 
235     ( 0, G4ThreeVector(0,0,(250+300)*mm), fLogicControlVol_GridShadow, "ControlVol_GridShadow",
236       fLogicWorld, false, 0);
237      
238  
239   } // end GRID
240   
241   // STEP MINIMUM SIZE 
242   fLogicVol->SetUserLimits(new G4UserLimits(1*mm));
243 
244   return fPhysiWorld;
245 }
246 
247 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
248 
249 void DetectorConstruction::SetG1(G4float value)
250 {
251   fG1 = value; 
252   G4RunManager::GetRunManager()->ReinitializeGeometry();   
253 }
254 
255 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
256 
257 void DetectorConstruction::SetG2(G4float value)
258 {
259   fG2 = value;
260   G4RunManager::GetRunManager()->ReinitializeGeometry();   
261 }
262 
263 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
264 
265 void DetectorConstruction::SetG3(G4float value)
266 {
267   fG3 = value;
268   G4RunManager::GetRunManager()->ReinitializeGeometry();   
269 }
270 
271 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
272 
273 void DetectorConstruction::SetG4(G4float value)
274 {
275   fG4 = value;
276   G4RunManager::GetRunManager()->ReinitializeGeometry();   
277 }
278 
279 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
280 
281 void DetectorConstruction::SetModel(G4int modelChoice)
282 {
283   if (modelChoice==1) fModel=1;
284   if (modelChoice==2) fModel=2;
285   if (modelChoice==3) fModel=3;
286   G4RunManager::GetRunManager()->ReinitializeGeometry();   
287 }
288 
289 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
290 
291 void DetectorConstruction::SetCoef(G4int val)
292 {
293   fCoef=val;
294   G4RunManager::GetRunManager()->ReinitializeGeometry();   
295 }
296 
297 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
298 
299 G4int DetectorConstruction::GetCoef()
300 {
301   return fCoef;
302 }
303 
304 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
305 
306 void DetectorConstruction::SetProfile(G4int myProfile)
307 {
308   fProfile=myProfile;
309   G4RunManager::GetRunManager()->ReinitializeGeometry();   
310 }
311 
312 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
313 
314 void DetectorConstruction::SetGrid(G4int myGrid)
315 {
316   fGrid=myGrid;
317   G4RunManager::GetRunManager()->ReinitializeGeometry();   
318 }
319 
320 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
321 
322 void DetectorConstruction::ConstructSDandField()
323 {
324       fField = new TabulatedField3D(fG1, fG2, fG3, fG4, fModel); 
325    
326       //This is thread-local
327       G4FieldManager* fFieldMgr = 
328   G4TransportationManager::GetTransportationManager()->GetFieldManager();
329            
330       G4Mag_UsualEqRhs* fEquation = new G4Mag_UsualEqRhs (fField);
331 
332       G4ClassicalRK4* fStepper = new G4ClassicalRK4 (fEquation);
333 
334       G4ChordFinder* fChordFinder = new G4ChordFinder(fField,1e-9*m,fStepper);
335 
336       fFieldMgr->SetChordFinder(fChordFinder);
337       fFieldMgr->SetDetectorField(fField);    
338  
339       // SI: 01-07-2018 : following settings were initially set to 1e-9*m
340       //  instead of 1e-9*m, but they now induce warnings as
341       //  *** G4Exception : GeomNav1002
342       //  issued by : G4PropagatorInField::ComputeStep
343 
344       fFieldMgr->GetChordFinder()->SetDeltaChord(1e-7*m);
345       fFieldMgr->SetDeltaIntersection(1e-7*m);
346       fFieldMgr->SetDeltaOneStep(1e-7*m);     
347       
348       //
349 
350       // To avoid G4MagIntegratorDriver::OneGoodStep:Stepsize underflows in Stepper
351       
352       if (fCoef==1)
353       {
354         G4PropagatorInField* fPropInField =
355           G4TransportationManager::GetTransportationManager()->GetPropagatorInField();
356         fPropInField->SetMinimumEpsilonStep(1e-11);
357         fPropInField->SetMaximumEpsilonStep(1e-10); 
358 
359       } 
360       else
361       {
362         G4PropagatorInField* fPropInField =
363           G4TransportationManager::GetTransportationManager()->GetPropagatorInField();
364         fPropInField->SetMinimumEpsilonStep(1e-9);
365         fPropInField->SetMaximumEpsilonStep(1e-8);
366       }
367 
368 }
369 
370