Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/advanced/microbeam/src/EMField.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // This example is provided by the Geant4-DNA collaboration
 27 // Any report or published results obtained using the Geant4-DNA software 
 28 // shall cite the following Geant4-DNA collaboration publication:
 29 // Med. Phys. 37 (2010) 4692-4708
 30 // The Geant4-DNA web site is available at http://geant4-dna.org
 31 // 
 32 // If you use this example, please cite the following publication:
 33 // Rad. Prot. Dos. 133 (2009) 2-11
 34 //
 35 // Based on purging magnet advanced example.
 36 //
 37 
 38 #include "EMField.hh"
 39 #include "G4Exp.hh"
 40 #include "G4SystemOfUnits.hh"
 41 
 42 EMField::EMField() 
 43 {}
 44 
 45 void EMField::GetFieldValue(const double point[4], double *Bfield ) const
 46 { 
 47   // Magnetic field
 48   Bfield[0] = 0;
 49   Bfield[1] = 0;
 50   Bfield[2] = 0;
 51   
 52   // Electric field
 53   Bfield[3] = 0;
 54   Bfield[4] = 0;
 55   Bfield[5] = 0;
 56 
 57   G4double Bx = 0;
 58   G4double By = 0;
 59   G4double Bz = 0;
 60    
 61   G4double x = point[0];
 62   G4double y = point[1];
 63   G4double z = point[2];
 64 
 65 // ***********************
 66 // AIFIRA SWITCHING MAGNET
 67 // ***********************
 68   
 69   // MAGNETIC FIELD VALUE FOR 3 MeV ALPHAS
 70   G4double switchingField = 0.0589768635 * tesla ;
 71   
 72   // BEAM START
 73   G4double beamStart = -10*m;
 74 
 75   // RADIUS
 76   G4double Rp = 0.698*m;
 77 
 78   // ENTRANCE POSITION AFTER ANALYSIS MAGNET
 79   G4double zS = 975*mm;
 80   
 81   // POLE GAP
 82   G4double D = 31.8*mm;
 83   
 84   // FRINGING FIELD
 85 
 86   G4double fieldBoundary, wc0, wc1, wc2, wc3, limitMinEntrance, limitMaxEntrance, limitMinExit, limitMaxExit;
 87 
 88   limitMinEntrance = beamStart+zS-4*D;
 89   limitMaxEntrance = beamStart+zS+4*D;
 90   limitMinExit =Rp-4*D;
 91   limitMaxExit =Rp+4*D;  
 92     
 93   wc0 = 0.3835;
 94   wc1 = 2.388;
 95   wc2 = -0.8171;
 96   wc3 = 0.200;
 97 
 98   fieldBoundary=0.62;
 99 
100   G4double ws, largeS, h, dhdlargeS, dhds, dlargeSds, dsdz, dsdx, zs0, Rs0, xcenter, zcenter;
101   
102 // - ENTRANCE OF SWITCHING MAGNET
103 
104 if ( (z >= limitMinEntrance) && (z < limitMaxEntrance) ) 
105 {
106   zs0 = fieldBoundary*D;
107   ws = (-z+beamStart+zS-zs0)/D;
108   dsdz = -1/D;
109   dsdx = 0;
110 
111   largeS = wc0 + wc1*ws + wc2*ws*ws + wc3*ws*ws*ws;
112   h = 1./(1.+G4Exp(largeS));
113   dhdlargeS = -G4Exp(largeS)*h*h;  
114   dlargeSds = wc1+ 2*wc2*ws + 3*wc3*ws*ws;
115   dhds = dhdlargeS * dlargeSds;
116       
117   By = switchingField * h ;
118   Bx = y*switchingField*dhds*dsdx;
119   Bz = y*switchingField*dhds*dsdz;
120 
121 }
122 
123 // - HEART OF SWITCHING MAGNET    
124     
125  if ( 
126           (z >= limitMaxEntrance)  
127      &&   (( x*x + (z -(beamStart+zS))*(z -(beamStart+zS)) < limitMinExit*limitMinExit)) 
128     )   
129 {
130    Bx=0; 
131    By = switchingField; 
132    Bz=0;
133 }                         
134   
135 // - EXIT OF SWITCHING MAGNET
136 
137 if ( 
138         (z >= limitMaxEntrance)  
139      && (( x*x + (z -(beamStart+zS))*(z -(beamStart+zS))) >= limitMinExit*limitMinExit) 
140      && (( x*x + (z -(beamStart+zS))*(z -(beamStart+zS))) < limitMaxExit*limitMaxExit)
141 
142    )    
143 {
144 
145   xcenter = 0;
146   zcenter =  beamStart+zS;
147   
148   Rs0 = Rp + D*fieldBoundary;
149   ws = (std::sqrt((z-zcenter)*(z-zcenter)+(x-xcenter)*(x-xcenter)) - Rs0)/D;
150     
151   dsdz = (1/D)*(z-zcenter)/std::sqrt((z-zcenter)*(z-zcenter)+(x-xcenter)*(x-xcenter));
152   dsdx = (1/D)*(x-xcenter)/std::sqrt((z-zcenter)*(z-zcenter)+(x-xcenter)*(x-xcenter));
153 
154   largeS = wc0 + wc1*ws + wc2*ws*ws + wc3*ws*ws*ws;
155   h = 1./(1.+G4Exp(largeS));
156   dhdlargeS = -G4Exp(largeS)*h*h;  
157   dlargeSds = wc1+ 2*wc2*ws + 3*wc3*ws*ws;
158   dhds = dhdlargeS * dlargeSds;
159       
160   By = switchingField * h ;
161   Bx = y*switchingField*dhds*dsdx;
162   Bz = y*switchingField*dhds*dsdz;
163 
164 }
165 
166 // **************************
167 // MICROBEAM LINE QUADRUPOLES
168 // **************************
169  
170   // MICROBEAM LINE ANGLE
171   G4double lineAngle = -10*deg;
172   
173   // X POSITION OF FIRST QUADRUPOLE
174   G4double lineX = -1295.59*mm;
175 
176   // Z POSITION OF FIRST QUADRUPOLE
177   G4double lineZ = -1327*mm;
178 
179   // Adjust magnetic zone absolute position
180   lineX = lineX + 5.24*micrometer*std::cos(-lineAngle); // 5.24 = 1.3 + 3.94 micrometer (cf. DetectorConstruction)
181   lineZ = lineZ + 5.24*micrometer*std::sin(-lineAngle);
182        
183   // QUADRUPOLE HALF LENGTH
184   G4double quadHalfLength = 75*mm;
185   
186   // QUADRUPOLE SPACING
187   G4double quadSpacing = 40*mm;
188   
189   // QUADRUPOLE CENTER COORDINATES
190   G4double xoprime, zoprime;
191   
192 if (z>=-1400*mm && z <-200*mm)
193 {
194   Bx=0; By=0; Bz=0;
195   
196   // FRINGING FILED CONSTANTS
197   G4double c0[4], c1[4], c2[4], z1[4], z2[4], a0[4], gradient[4];
198   
199   // QUADRUPOLE 1
200   c0[0] = -5.;
201   c1[0] = 2.5;
202   c2[0] = -0.1;
203   z1[0] = 60*mm;
204   z2[0] = 130*mm;
205   a0[0] = 10*mm;
206   gradient[0] = 3.406526 *tesla/m;
207 
208   // QUADRUPOLE 2
209   c0[1] = -5.;
210   c1[1] = 2.5;
211   c2[1] = -0.1;
212   z1[1] = 60*mm;
213   z2[1] = 130*mm;
214   a0[1] = 10*mm;
215   gradient[1] = -8.505263 *tesla/m;
216 
217   // QUADRUPOLE 3
218   c0[2] = -5.;
219   c1[2] = 2.5;
220   c2[2] = -0.1;
221   z1[2] = 60*mm;
222   z2[2] = 130*mm;
223   a0[2] = 10*mm;
224   gradient[2] = 8.505263 *tesla/m;
225 
226   // QUADRUPOLE 4
227   c0[3] = -5.;
228   c1[3] = 2.5;
229   c2[3] = -0.1;
230   z1[3] = 60*mm;
231   z2[3] = 130*mm;
232   a0[3] = 10*mm;
233   gradient[3] = -3.406526*tesla/m;
234 
235   // FIELD CREATED BY A QUADRUPOLE IN ITS LOCAL FRAME
236   G4double Bx_local,By_local,Bz_local;
237   Bx_local = 0; By_local = 0; Bz_local = 0;
238   
239   // FIELD CREATED BY A QUADRUPOOLE IN WORLD FRAME
240   G4double Bx_quad,By_quad,Bz_quad;
241   Bx_quad = 0; By_quad=0; Bz_quad=0;
242   
243   // QUADRUPOLE FRAME
244   G4double x_local,y_local,z_local;
245   x_local= 0; y_local=0; z_local=0;
246 
247   G4double vars = 0;
248   G4double G0, G1, G2, G3;
249   G4double K1, K2, K3;
250   G4double P0, P1, P2,     cte;
251 
252   K1=0;
253   K2=0;
254   K3=0;
255   P0=0;
256   P1=0;
257   P2=0;
258   G0=0;
259   G1=0;
260   G2=0;
261   G3=0;
262   cte=0;
263 
264   G4bool largeScattering=false;
265   
266   for (G4int i=0;i<4; i++) 
267   {
268  
269    if (i==0) 
270     { xoprime = lineX + quadHalfLength*std::sin(lineAngle);
271       zoprime = lineZ + quadHalfLength*std::cos(lineAngle);
272 
273       x_local = (x - xoprime) * std::cos (lineAngle) - (z - zoprime) * std::sin (lineAngle); 
274       y_local = y; 
275       z_local = (z - zoprime) * std::cos (lineAngle) + (x - xoprime) * std::sin (lineAngle); 
276       if (std::sqrt(x_local*x_local+y_local*y_local)>a0[i]) largeScattering=true;
277 
278     }
279      
280    if (i==1) 
281     { xoprime = lineX + (3*quadHalfLength+quadSpacing)*std::sin(lineAngle);
282       zoprime = lineZ + (3*quadHalfLength+quadSpacing)*std::cos(lineAngle);
283 
284       x_local = (x - xoprime) * std::cos (lineAngle) - (z - zoprime) * std::sin (lineAngle); 
285       y_local = y; 
286       z_local = (z - zoprime) * std::cos (lineAngle) + (x - xoprime) * std::sin (lineAngle); 
287       if (std::sqrt(x_local*x_local+y_local*y_local)>a0[i]) largeScattering=true;
288     }
289 
290    if (i==2) 
291     { xoprime = lineX + (5*quadHalfLength+2*quadSpacing)*std::sin(lineAngle);
292       zoprime = lineZ + (5*quadHalfLength+2*quadSpacing)*std::cos(lineAngle);
293 
294       x_local = (x - xoprime) * std::cos (lineAngle) - (z - zoprime) * std::sin (lineAngle); 
295       y_local = y; 
296       z_local = (z - zoprime) * std::cos (lineAngle) + (x - xoprime) * std::sin (lineAngle); 
297       if (std::sqrt(x_local*x_local+y_local*y_local)>a0[i]) largeScattering=true;
298     }
299    
300    if (i==3) 
301     { xoprime = lineX + (7*quadHalfLength+3*quadSpacing)*std::sin(lineAngle);
302       zoprime = lineZ + (7*quadHalfLength+3*quadSpacing)*std::cos(lineAngle);
303 
304       x_local = (x - xoprime) * std::cos (lineAngle) - (z - zoprime) * std::sin (lineAngle); 
305       y_local = y; 
306       z_local = (z - zoprime) * std::cos (lineAngle) + (x - xoprime) * std::sin (lineAngle); 
307       if (std::sqrt(x_local*x_local+y_local*y_local)>a0[i]) largeScattering=true;
308     }
309 
310    
311    if ( z_local < -z2[i] )
312    {
313     G0=0;
314     G1=0;
315     G2=0;
316     G3=0;
317    }
318    
319    if ( z_local > z2[i] )
320    {
321     G0=0;
322     G1=0;
323     G2=0;
324     G3=0;
325    }
326 
327    if ( (z_local>=-z1[i]) & (z_local<=z1[i]) ) 
328    {
329     G0=gradient[i];
330     G1=0;
331     G2=0;
332     G3=0;
333    }
334    
335    if ( ((z_local>=-z2[i]) & (z_local<-z1[i])) ||  ((z_local>z1[i]) & (z_local<=z2[i])) ) 
336    {
337 
338     vars = ( z_local - z1[i]) / a0[i] ;
339       if (z_local<-z1[i]) vars = ( - z_local - z1[i]) / a0[i] ;
340 
341 
342     P0 = c0[i]+c1[i]*vars+c2[i]*vars*vars;
343 
344     P1 = c1[i]/a0[i]+2*c2[i]*(z_local-z1[i])/a0[i]/a0[i];
345     if (z_local<-z1[i])  P1 = -c1[i]/a0[i]+2*c2[i]*(z_local+z1[i])/a0[i]/a0[i];
346 
347     P2 = 2*c2[i]/a0[i]/a0[i];
348 
349     cte = 1 + G4Exp(c0[i]);
350 
351     K1 = -cte*P1*G4Exp(P0)/( (1+G4Exp(P0))*(1+G4Exp(P0)) );
352 
353     K2 = -cte*G4Exp(P0)*(
354      P2/( (1+G4Exp(P0))*(1+G4Exp(P0)) )
355     +2*P1*K1/(1+G4Exp(P0))/cte
356     +P1*P1/(1+G4Exp(P0))/(1+G4Exp(P0))
357     );
358  
359     K3 = -cte*G4Exp(P0)*(
360     (3*P2*P1+P1*P1*P1)/(1+G4Exp(P0))/(1+G4Exp(P0))
361     +4*K1*(P1*P1+P2)/(1+G4Exp(P0))/cte
362     +2*P1*(K1*K1/cte/cte+K2/(1+G4Exp(P0))/cte)
363      );
364     
365     G0 = gradient[i]*cte/(1+G4Exp(P0));
366     G1 = gradient[i]*K1;
367     G2 = gradient[i]*K2;
368     G3 = gradient[i]*K3;
369 
370    }
371     
372    // PROTECTION AGAINST LARGE SCATTERING
373 
374    if ( largeScattering ) 
375    {
376     G0=0;
377     G1=0;
378     G2=0;
379     G3=0;
380    }
381 
382    // MAGNETIC FIELD COMPUTATION FOR EACH QUADRUPOLE
383    
384    Bx_local = y_local*(G0-(1./12)*(3*x_local*x_local+y_local*y_local)*G2);
385    By_local = x_local*(G0-(1./12)*(3*y_local*y_local+x_local*x_local)*G2);
386    Bz_local = x_local*y_local*(G1-(1./12)*(x_local*x_local+y_local*y_local)*G3);
387 
388    Bx_quad = Bz_local*std::sin(lineAngle)+Bx_local*std::cos(lineAngle);
389    By_quad = By_local;
390    Bz_quad = Bz_local*std::cos(lineAngle)-Bx_local*std::sin(lineAngle);
391 
392    // TOTAL MAGNETIC FIELD
393    
394    Bx = Bx + Bx_quad ;
395    By = By + By_quad ;
396    Bz = Bz + Bz_quad ;
397 
398   } // LOOP ON QUADRUPOLES
399 
400       
401 } // END OF QUADRUPLET
402 
403   Bfield[0] = Bx;
404   Bfield[1] = By;
405   Bfield[2] = Bz;
406 
407 // *****************************************
408 // ELECTRIC FIELD CREATED BY SCANNING PLATES
409 // *****************************************
410 
411   Bfield[3] = 0;
412   Bfield[4] = 0;
413   Bfield[5] = 0;
414 
415   // POSITION OF EXIT OF LAST QUAD WHERE THE SCANNING PLATES START
416 
417   G4double electricPlateWidth1 = 5 * mm;
418   G4double electricPlateWidth2 = 5 * mm;
419   G4double electricPlateLength1 = 36 * mm;
420   G4double electricPlateLength2 = 34 * mm;
421   G4double electricPlateGap = 5 * mm;
422   G4double electricPlateSpacing1 = 3 * mm;
423   G4double electricPlateSpacing2 = 4 * mm;
424 
425   // APPLY VOLTAGE HERE IN VOLTS (no electrostatic deflection here)
426   G4double electricPlateVoltage1 = 0 * volt;
427   G4double electricPlateVoltage2 = 0 * volt;
428 
429   G4double electricFieldPlate1 = electricPlateVoltage1 / electricPlateSpacing1 ;
430   G4double electricFieldPlate2 = electricPlateVoltage2 / electricPlateSpacing2 ;
431 
432   G4double  beginFirstZoneX = lineX + (8*quadHalfLength+3*quadSpacing)*std::sin(lineAngle);
433   G4double  beginFirstZoneZ = lineZ + (8*quadHalfLength+3*quadSpacing)*std::cos(lineAngle);
434 
435   G4double  beginSecondZoneX = lineX + (8*quadHalfLength+3*quadSpacing+electricPlateLength1+electricPlateGap)*std::sin(lineAngle);
436   G4double  beginSecondZoneZ = lineZ + (8*quadHalfLength+3*quadSpacing+electricPlateLength1+electricPlateGap)*std::cos(lineAngle);
437 
438   G4double xA, zA, xB, zB, xC, zC, xD, zD;
439   G4double slope1, cte1, slope2, cte2, slope3, cte3, slope4, cte4;
440  
441   // WARNING : lineAngle < 0
442 
443   // FIRST PLATES
444   
445   xA = beginFirstZoneX + std::cos(lineAngle)*electricPlateSpacing1/2;
446   zA = beginFirstZoneZ - std::sin(lineAngle)*electricPlateSpacing1/2;
447 
448   xB = xA + std::sin(lineAngle)*electricPlateLength1; 
449   zB = zA + std::cos(lineAngle)*electricPlateLength1;
450   
451   xC = xB - std::cos(lineAngle)*electricPlateSpacing1;
452   zC = zB + std::sin(lineAngle)*electricPlateSpacing1;
453 
454   xD = xC - std::sin(lineAngle)*electricPlateLength1; 
455   zD = zC - std::cos(lineAngle)*electricPlateLength1;
456   
457   slope1 = (xB-xA)/(zB-zA);
458   cte1 = xA - slope1 * zA;
459   
460   slope2 = (xC-xB)/(zC-zB);
461   cte2 = xB - slope2 * zB;
462   
463   slope3 = (xD-xC)/(zD-zC);
464   cte3 = xC - slope3 * zC;
465   
466   slope4 = (xA-xD)/(zA-zD);
467   cte4 = xD - slope4 * zD;
468   
469    
470   if 
471   (
472        x <= slope1 * z + cte1
473     && x >= slope3 * z + cte3
474     && x <= slope4 * z + cte4
475     && x >= slope2 * z + cte2    
476     && std::abs(y)<=electricPlateWidth1/2
477   )  
478 
479   {
480       Bfield[3] = electricFieldPlate1*std::cos(lineAngle);
481       Bfield[4] = 0;
482       Bfield[5] = -electricFieldPlate1*std::sin(lineAngle);
483  
484   }
485       
486   // SECOND PLATES
487       
488   xA = beginSecondZoneX + std::cos(lineAngle)*electricPlateWidth2/2;
489   zA = beginSecondZoneZ - std::sin(lineAngle)*electricPlateWidth2/2;
490 
491   xB = xA + std::sin(lineAngle)*electricPlateLength2; 
492   zB = zA + std::cos(lineAngle)*electricPlateLength2;
493   
494   xC = xB - std::cos(lineAngle)*electricPlateWidth2;
495   zC = zB + std::sin(lineAngle)*electricPlateWidth2;
496 
497   xD = xC - std::sin(lineAngle)*electricPlateLength2; 
498   zD = zC - std::cos(lineAngle)*electricPlateLength2;
499   
500   slope1 = (xB-xA)/(zB-zA);
501   cte1 = xA - slope1 * zA;
502   
503   slope2 = (xC-xB)/(zC-zB);
504   cte2 = xB - slope2 * zB;
505   
506   slope3 = (xD-xC)/(zD-zC);
507   cte3 = xC - slope3 * zC;
508   
509   slope4 = (xA-xD)/(zA-zD);
510   cte4 = xD - slope4 * zD;
511 
512   if 
513   (     
514        x <= slope1 * z + cte1
515     && x >= slope3 * z + cte3
516     && x <= slope4 * z + cte4
517     && x >= slope2 * z + cte2    
518     && std::abs(y)<=electricPlateSpacing2/2
519   )
520 
521   {  
522       Bfield[3] = 0;
523       Bfield[4] = electricFieldPlate2;
524       Bfield[5] = 0;
525   }
526 
527 }
528