Version:
[ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]
1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2 | medical_linac |
3 + +
4 | README |
5 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
6
7 This application has been developed by the Geant4 users:
8 *Silvia Pozzi and *Barbara Caccia with the support of ^Carlo Mancini Terracciano
9
10 Past contributros:
11 $Claudio Andenna, Pablo Cirrone, Alessandro Occhigrossi*. S. Guatelli+
12 Michela Piergentili with the support of M.G.Pia and Franca Foppiano.
13
14 *Istituto Superiore di Sanita' and INFN Roma, Italy
15 ^Physics Dep. - Univ. La Sapienza and INFN Roma, Italy
16 %LNS-INFN Catania, Italy
17 +University of Wollongong, Autralia
18 $INAIL DIPIA - ex ISPESL and INFN Roma, gruppo collegato Sanita', Italy
19
20
21 ---> A brief description
22
23 The example is a deep update of the previous version for medlinac. The example
24 is based on a medical accelerator used in a intercomparison exercise managed
25 by working Group6 (Computational Dosimetry) of Eurados network (B.Caccia et
26 al. "A model validation scheme for Monte Carlo simulations of a medical linear accelerator: geometrical description and dosimetric data used in the “Linac
27 Action”- free download from https://eurados.sckcen.be/sites/eurados/files/uploads/Report-Publications/Reports/2020/EURADOS%20Report%202020-05.pdf).
28 The medical accelerator is a GE Saturn 43 LINAC. The given description of the
29 Saturn 43 LINAC corresponds to an operational mode with an acceleration voltage
30 of 12 MV in the photon mode with collimator settings for a 10x10 cm^2 field size
31 at standard working distance. Experimental dosimetric data are disposable and
32 are related to a cubic water phantom of a 40x40x40 cm3 polymethyl methacrylate
33 (PMMA) water tank filled with distilled water. At the front of the phantom, the
34 thickness of PMMA crossed by the beam is 4 mm (15 mm for the all other walls of
35 the phantom). The distance from the source point of the target to the external
36 entrance window of the water phantom is 90 cm.
37
38 The example package contains:
39 - source files (src, include, macros)
40 - CMakeLists.txt
41 - README.txt
42 - main.cc
43
44
45 ---------------------------------------------------------------
46 ----> 1. Experimental set-up.
47
48 The elements simulated are:
49
50 1 - A source of electrons. The beam direction is along the z axis.
51 2 - A target
52 3 - A primary collimator
53 4 - A vacuum window
54 5 - A flattening filter
55 6 - A ion chamber
56 7 - Secondary movable collimators (jaws)
57 8 - A cubic phantom filled with water
58
59 --------------------------------------------------------------
60 ----> 2. How to run the example.
61
62 The example runs with the run.mac macro file.
63
64 -----------------------------------------------------------------------
65 ----> 4. The physics
66
67 The PhysicsList class allows the activation of all the physic models
68 via the macro file.
69 The standard electromagnetic option3 model is the default model.
70
71 ------------------------------------------------------------------------
72 ----> 5. Simulation output
73
74 The output of the medlinac example is generated by the Geant4 command-based
75 scorer doseDeposit.
76
77 ------------------------------------------------------------------------
78 ----> 6. Main differences with the previous ML2 release.
79
80 Multithreading has been implemented and a real accelerator was used,
81 with experimental data for dose profiles and deep percentage dose
82 with which to check the results obtained in the simulation.
83
84 ------------------------------------------------------------------------
85 ----> 7. Contacts
86
87 If you have any questions or wish to notify of updates and/or modification
88 please contact:
89
90 Silvia Pozzi at silvia.pozzi@iss.it
91 Barbara Caccia at barbara.caccia@iss.it
92
93 Istituto Superiore di Sanita' and INFN Roma, Italy
94 Viale Regina Elena 299, 00161 Roma (Italy)
95