Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/advanced/hadrontherapy/src/HadrontherapyMagneticField3D.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // Hadrontherapy advanced example for Geant4
 27 // See more at: https://twiki.cern.ch/twiki/bin/view/Geant4/AdvancedExamplesHadrontherapy
 28 
 29 #include "HadrontherapyMagneticField3D.hh"
 30 #include "G4SystemOfUnits.hh"
 31 #include "G4AutoLock.hh"
 32 
 33 namespace{  G4Mutex MyHadrontherapyLock=G4MUTEX_INITIALIZER;  }
 34 
 35 using namespace std;
 36 
 37 HadrontherapyMagneticField3D::HadrontherapyMagneticField3D( const char* filename, double xOffset )
 38   :fXoffset(xOffset),invertX(false),invertY(false),invertZ(false)
 39 {
 40    //The format file is: X Y Z Ex Ey Ez
 41 
 42   double lenUnit= meter;
 43   double fieldUnit= tesla;
 44   G4cout << "\n-----------------------------------------------------------"
 45    << "\n      Magnetic field"
 46    << "\n-----------------------------------------------------------";
 47 
 48 
 49   G4cout << "\n ---> " "Reading the field grid from " << filename << " ... " << G4endl;
 50   G4AutoLock lock(&MyHadrontherapyLock);
 51 
 52   ifstream file( filename ); // Open the file for reading.
 53 
 54   // Ignore first blank line
 55   char buffer[256];
 56   file.getline(buffer,256);
 57 
 58   // Read table dimensions
 59   file >> nx >> ny >> nz; // Note dodgy order
 60 
 61   G4cout << "  [ Number of values x,y,z: "
 62    << nx << " " << ny << " " << nz << " ] "
 63    << G4endl;
 64 
 65   // Set up storage space for table
 66   xField.resize( nx );
 67   yField.resize( nx );
 68   zField.resize( nx );
 69   int ix, iy, iz;
 70   for (ix=0; ix<nx; ix++) {
 71     xField[ix].resize(ny);
 72     yField[ix].resize(ny);
 73     zField[ix].resize(ny);
 74     for (iy=0; iy<ny; iy++) {
 75       xField[ix][iy].resize(nz);
 76       yField[ix][iy].resize(nz);
 77       zField[ix][iy].resize(nz);
 78     }
 79   }
 80 
 81   // Read in the data
 82   G4double xval=0.;
 83   G4double yval=0.;
 84   G4double zval=0.;
 85   G4double bx=0.;
 86   G4double by=0.;
 87   G4double bz=0.;
 88   for (ix=0; ix<nx; ix++) {
 89     for (iy=0; iy<ny; iy++) {
 90       for (iz=0; iz<nz; iz++) {
 91         file >> xval >> yval >> zval >> bx >> by >> bz ;
 92         if ( ix==0 && iy==0 && iz==0 ) {
 93           minx = xval * lenUnit;
 94           miny = yval * lenUnit;
 95           minz = zval * lenUnit;
 96         }
 97         xField[ix][iy][iz] = bx * fieldUnit;
 98         yField[ix][iy][iz] = by * fieldUnit;
 99         zField[ix][iy][iz] = bz * fieldUnit;
100       }
101     }
102   }
103   file.close();
104 
105   lock.unlock();
106 
107   maxx = xval * lenUnit;
108   maxy = yval * lenUnit;
109   maxz = zval * lenUnit;
110 
111   G4cout << "\n ---> ... done reading " << G4endl;
112 
113   // G4cout << " Read values of field from file " << filename << G4endl;
114   G4cout << " ---> assumed the order:  x, y, z, Bx, By, Bz "
115    << "\n ---> Min values x,y,z: "
116    << minx/cm << " " << miny/cm << " " << minz/cm << " cm "
117    << "\n ---> Max values x,y,z: "
118    << maxx/cm << " " << maxy/cm << " " << maxz/cm << " cm "
119    << "\n ---> The field will be offset by " << xOffset/cm << " cm " << G4endl;
120 
121   // Should really check that the limits are not the wrong way around.
122   if (maxx < minx) {swap(maxx,minx); invertX = true;}
123   if (maxy < miny) {swap(maxy,miny); invertY = true;}
124   if (maxz < minz) {swap(maxz,minz); invertZ = true;}
125   G4cout << "\nAfter reordering if neccesary"
126    << "\n ---> Min values x,y,z: "
127    << minx/cm << " " << miny/cm << " " << minz/cm << " cm "
128    << " \n ---> Max values x,y,z: "
129    << maxx/cm << " " << maxy/cm << " " << maxz/cm << " cm ";
130 
131   dx = maxx - minx;
132   dy = maxy - miny;
133   dz = maxz - minz;
134   G4cout << "\n ---> Dif values x,y,z (range): "
135    << dx/cm << " " << dy/cm << " " << dz/cm << " cm in z "
136    << "\n-----------------------------------------------------------" << G4endl;
137 }
138 
139 void HadrontherapyMagneticField3D::GetFieldValue(const double point[4],
140               double *Bfield ) const
141 {
142     double x = point[0]+ fXoffset;
143     double y = point[1];
144     double z = point[2];
145 
146     // Position of given point within region, normalized to the range
147     // [0,1]
148     double xfraction = (x - minx) / dx;
149     double yfraction = (y - miny) / dy;
150     double zfraction = (z - minz) / dz;
151 
152     if (invertX) { xfraction = 1 - xfraction;}
153     if (invertY) { yfraction = 1 - yfraction;}
154     if (invertZ) { zfraction = 1 - zfraction;}
155 
156     // Need addresses of these to pass to modf below.
157     // modf uses its second argument as an OUTPUT argument.
158     double xdindex, ydindex, zdindex;
159 
160     // Position of the point within the cuboid defined by the
161     // nearest surrounding tabulated points
162     double xlocal = ( std::modf(xfraction*(nx-1), &xdindex));
163     double ylocal = ( std::modf(yfraction*(ny-1), &ydindex));
164     double zlocal = ( std::modf(zfraction*(nz-1), &zdindex));
165 
166     // The indices of the nearest tabulated point whose coordinates
167     // are all less than those of the given point
168     int xindex = static_cast<int>(std::floor(xdindex));
169     int yindex = static_cast<int>(std::floor(ydindex));
170     int zindex = static_cast<int>(std::floor(zdindex));
171 
172       // Check that the point is within the defined region
173     if ((xindex < 0) || (xindex >= nx - 1) ||
174         (yindex < 0) || (yindex >= ny - 1) ||
175         (zindex < 0) || (zindex >= nz - 1))
176     {
177         Bfield[0] = 0.0;
178         Bfield[1] = 0.0;
179         Bfield[2] = 0.0;
180     }
181     else
182     {
183 
184 #ifdef DEBUG_INTERPOLATING_FIELD
185         G4cout << "Local x,y,z: " << xlocal << " " << ylocal << " " << zlocal << G4endl;
186         G4cout << "Index x,y,z: " << xindex << " " << yindex << " " << zindex << G4endl;
187         double valx0z0, mulx0z0, valx1z0, mulx1z0;
188         double valx0z1, mulx0z1, valx1z1, mulx1z1;
189         valx0z0= table[xindex  ][0][zindex];  mulx0z0=  (1-xlocal) * (1-zlocal);
190         valx1z0= table[xindex+1][0][zindex];  mulx1z0=   xlocal    * (1-zlocal);
191         valx0z1= table[xindex  ][0][zindex+1]; mulx0z1= (1-xlocal) * zlocal;
192         valx1z1= table[xindex+1][0][zindex+1]; mulx1z1=  xlocal    * zlocal;
193 #endif
194 
195         // Full 3-dimensional version
196         Bfield[0] =
197           xField[xindex  ][yindex  ][zindex  ] * (1-xlocal) * (1-ylocal) * (1-zlocal) +
198           xField[xindex  ][yindex  ][zindex+1] * (1-xlocal) * (1-ylocal) *    zlocal  +
199           xField[xindex  ][yindex+1][zindex  ] * (1-xlocal) *    ylocal  * (1-zlocal) +
200           xField[xindex  ][yindex+1][zindex+1] * (1-xlocal) *    ylocal  *    zlocal  +
201           xField[xindex+1][yindex  ][zindex  ] *    xlocal  * (1-ylocal) * (1-zlocal) +
202           xField[xindex+1][yindex  ][zindex+1] *    xlocal  * (1-ylocal) *    zlocal  +
203           xField[xindex+1][yindex+1][zindex  ] *    xlocal  *    ylocal  * (1-zlocal) +
204           xField[xindex+1][yindex+1][zindex+1] *    xlocal  *    ylocal  *    zlocal ;
205 
206         Bfield[1] =
207           yField[xindex  ][yindex  ][zindex  ] * (1-xlocal) * (1-ylocal) * (1-zlocal) +
208           yField[xindex  ][yindex  ][zindex+1] * (1-xlocal) * (1-ylocal) *    zlocal  +
209           yField[xindex  ][yindex+1][zindex  ] * (1-xlocal) *    ylocal  * (1-zlocal) +
210           yField[xindex  ][yindex+1][zindex+1] * (1-xlocal) *    ylocal  *    zlocal  +
211           yField[xindex+1][yindex  ][zindex  ] *    xlocal  * (1-ylocal) * (1-zlocal) +
212           yField[xindex+1][yindex  ][zindex+1] *    xlocal  * (1-ylocal) *    zlocal  +
213           yField[xindex+1][yindex+1][zindex  ] *    xlocal  *    ylocal  * (1-zlocal) +
214           yField[xindex+1][yindex+1][zindex+1] *    xlocal  *    ylocal  *    zlocal ;
215 
216         Bfield[2] =
217           zField[xindex  ][yindex  ][zindex  ] * (1-xlocal) * (1-ylocal) * (1-zlocal) +
218           zField[xindex  ][yindex  ][zindex+1] * (1-xlocal) * (1-ylocal) *    zlocal  +
219           zField[xindex  ][yindex+1][zindex  ] * (1-xlocal) *    ylocal  * (1-zlocal) +
220           zField[xindex  ][yindex+1][zindex+1] * (1-xlocal) *    ylocal  *    zlocal  +
221           zField[xindex+1][yindex  ][zindex  ] *    xlocal  * (1-ylocal) * (1-zlocal) +
222           zField[xindex+1][yindex  ][zindex+1] *    xlocal  * (1-ylocal) *    zlocal  +
223           zField[xindex+1][yindex+1][zindex  ] *    xlocal  *    ylocal  * (1-zlocal) +
224           zField[xindex+1][yindex+1][zindex+1] *    xlocal  *    ylocal  *    zlocal ;
225     }
226 
227 //In order to obtain the output file with the magnetic components read from a particle passing in the magnetic field
228 /*  std::ofstream MagneticField("MagneticField.out", std::ios::app);
229      MagneticField<<   Bfield[0] << '\t' << "   "
230       <<   Bfield[1] << '\t' << "    "
231       <<   Bfield[2] << '\t' << "   "
232       <<   point[0] << '\t' << "   "
233       <<   point[1] << '\t' << "    "
234       <<   point[2] << '\t' << "   "
235       << std::endl;*/
236 
237 }
238