Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // Author: Alfonso Mantero (Alfonso.Mantero@ge.infn.it) 28 // 29 // History: 30 // ----------- 31 // 2 June 2002 First committed to cvs 32 // 33 // ------------------------------------------------------------------- 34 35 // Class description: 36 // Low Energy Electromagnetic Physics 37 // This Class loads and stores all the information of auger effect (shellIds, 38 // probabilities and energies of the electrons emitted) 39 // Further documentation available from http://www.ge.infn.it/geant4/lowE 40 41 // ------------------------------------------------------------------- 42 43 #ifndef G4RDAUGERDATA_HH 44 #define G4RDAUGERDATA_HH 1 45 46 #include "globals.hh" 47 #include <vector> 48 #include <map> 49 #include "G4RDAugerTransition.hh" 50 51 class G4DataVector; 52 53 class G4RDAugerData 54 { 55 public: 56 57 G4RDAugerData(); 58 59 ~G4RDAugerData(); 60 61 // The method returns the number of shells in wich a 62 // vacancy can be filled by a NON-radiative transition, given the atomic number 63 size_t NumberOfVacancies(G4int Z) const; 64 65 // Given the index of the vacancy (and the atomic number Z) returns its identity 66 G4int VacancyId(G4int Z, G4int vacancyIndex) const; 67 68 // Given the index of a vacancy in the atom with the atomc number Z, returns the number of 69 //shells starting from wich an electron can fill the vacancy 70 size_t NumberOfTransitions(G4int Z, G4int vacancyIndex) const; 71 72 // Given the atomic number Z, the Index of the initial vacancy shell 73 // and the index of the starting shell for the 74 // transition, returns the identity of the shell originating the electron transition 75 G4int StartShellId(G4int Z, G4int initialVacancyIndex, G4int transitionShellIndex) const; 76 77 // Given the atomic number , the indexes of the starting, the auger originating shell, 78 // and the transition shell Id, returns the transition energy 79 G4double StartShellEnergy(G4int Z, G4int vacancyIndex, G4int transitionId, G4int augerIndex) const; 80 81 // Given the atomic number, the index of the starting shell, the auger originating shells, 82 // and the transition shell Id, returns the transition probability 83 G4double StartShellProb(G4int Z, G4int vacancyIndex,G4int transitionId,G4int augerIndex) const; 84 85 // Given the atomic number, the index of the starting vacancy shell and the transition shell Id, 86 // returns the number of shells wich an auger electron can come from. 87 size_t NumberOfAuger(G4int Z, G4int initIndex, G4int vacancyId) const; 88 89 // Given the atomic number, th index of the starting and the auger originating shell, 90 // and the transition shell Id, returns the ager originating shell Id 91 size_t AugerShellId(G4int Z, G4int vacancyIndex, G4int transId, G4int augerIndex) const; 92 93 std::vector<G4RDAugerTransition> LoadData(G4int Z); 94 95 void BuildAugerTransitionTable(); 96 97 void PrintData(G4int Z); 98 99 100 101 // Given the atomic number and the vacancy intial shell index returns 102 // the AugerTransition object related to that shell 103 104 G4RDAugerTransition* GetAugerTransition(G4int Z, G4int vacancyShellIndex); 105 106 // Given the atomic number returns a vector of possible AugerTransition objects 107 std::vector<G4RDAugerTransition>* GetAugerTransitions(G4int Z); 108 109 private: 110 111 // std::map<G4int,G4DataVector*,std::less<G4int> > idMap; 112 113 typedef std::map<G4int,std::vector<G4RDAugerTransition>,std::less<G4int> > trans_Table; 114 trans_Table augerTransitionTable; 115 116 /* 117 std::map<G4int,std::map<G4Int,G4DataVector*,std::less<G4int> >,std::less<G4int> > transProbabilityMap; 118 std::map<G4int,std::map<G4Int,G4DataVector*,std::less<G4int> >,std::less<G4int> > transAugerIdMap; 119 */ 120 121 std::vector<G4int> nInitShells; 122 std::vector<G4int> numberOfVacancies; 123 124 }; 125 126 #endif 127 128 129 130 131 132