Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 /* 27 * ============================================================================= 28 * 29 * Filename: CexmcReimplementedGenbod.cc 30 * 31 * Description: reimplemented GENBOD 32 * (mostly adopted from ROOT TGenPhaseSpace) 33 * 34 * Version: 1.0 35 * Created: 08.09.2010 18:52:39 36 * Revision: none 37 * Compiler: gcc 38 * 39 * Author: Alexey Radkov (), 40 * Company: PNPI 41 * 42 * ============================================================================= 43 */ 44 45 #include <cmath> 46 #include <Randomize.hh> 47 #include <G4PhysicalConstants.hh> 48 #include <G4SystemOfUnits.hh> 49 #include "CexmcReimplementedGenbod.hh" 50 #include "CexmcException.hh" 51 52 53 namespace 54 { 55 G4int DoubleMax( const void * a, const void * b ) 56 { 57 G4double aa( *( ( G4double * )a ) ); 58 G4double bb( *( ( G4double * )b ) ); 59 60 if ( aa > bb ) 61 return 1; 62 63 if ( aa < bb ) 64 return -1; 65 66 return 0; 67 } 68 69 70 G4double PDK( G4double a, G4double b, G4double c ) 71 { 72 G4double x( ( a - b - c ) * ( a + b + c ) * ( a - b + c ) * 73 ( a + b - c ) ); 74 x = std::sqrt( x ) / ( 2 * a ); 75 76 return x; 77 } 78 } 79 80 81 CexmcReimplementedGenbod::CexmcReimplementedGenbod() : maxWeight( 0. ), 82 nmbOfOutputParticles( 0 ) 83 { 84 } 85 86 87 G4double CexmcReimplementedGenbod::Generate( void ) 88 { 89 // Generate a random final state. 90 // The function returns the weigth of the current event. 91 // Note that Momentum, Energy units are Gev/C, GeV 92 93 G4double te_minus_tm( totalEnergy - totalMass ); 94 G4double rno[ maxParticles ]; 95 rno[ 0 ] = 0; 96 97 if ( nmbOfOutputParticles > 2 ) 98 { 99 for ( G4int i( 1 ); i < nmbOfOutputParticles - 1; ++i ) 100 { 101 rno[ i ] = G4UniformRand(); 102 } 103 qsort( rno + 1, nmbOfOutputParticles - 2, sizeof( G4double ), 104 DoubleMax ); 105 } 106 rno[ nmbOfOutputParticles - 1 ] = 1; 107 108 G4double invMas[ maxParticles ]; 109 G4double sum( 0 ); 110 111 for ( int i( 0 ); i < nmbOfOutputParticles; ++i ) 112 { 113 sum += outVec[ i ].mass / GeV; 114 invMas[ i ] = rno[ i ] * te_minus_tm / GeV + sum; 115 } 116 117 // 118 //-----> compute the weight of the current event 119 // 120 G4double wt( maxWeight ); 121 G4double pd[ maxParticles ]; 122 123 for ( int i( 0 ); i < nmbOfOutputParticles - 1; ++i ) 124 { 125 pd[ i ] = PDK( invMas[ i + 1 ], invMas[ i ], 126 outVec[ i + 1 ].mass / GeV ); 127 wt *= pd[ i ]; 128 } 129 130 // 131 //-----> complete specification of event (Raubold-Lynch method) 132 // 133 outVec[ 0 ].lVec->setPx( 0. ); 134 outVec[ 0 ].lVec->setPy( pd[ 0 ] ); 135 outVec[ 0 ].lVec->setPz( 0. ); 136 outVec[ 0 ].lVec->setE( std::sqrt( pd[ 0 ] * pd[ 0 ] + 137 outVec[ 0 ].mass / GeV * 138 outVec[ 0 ].mass / GeV ) ); 139 140 G4int i( 1 ); 141 142 while ( true ) 143 { 144 outVec[ i ].lVec->setPx( 0. ); 145 outVec[ i ].lVec->setPy( -pd[ i - 1 ] ); 146 outVec[ i ].lVec->setPz( 0. ); 147 outVec[ i ].lVec->setE( std::sqrt( pd[ i - 1 ] * pd[ i - 1 ] + 148 outVec[ i ].mass / GeV * 149 outVec[ i ].mass / GeV ) ); 150 151 G4double cZ( 2 * G4UniformRand() - 1 ); 152 G4double sZ( std::sqrt( 1 - cZ * cZ ) ); 153 G4double angY( 2 * pi * G4UniformRand() ); 154 G4double cY( std::cos( angY ) ); 155 G4double sY( std::sin( angY ) ); 156 157 for ( int j( 0 ); j <= i; ++j ) 158 { 159 G4LorentzVector * v( outVec[ j ].lVec ); 160 G4double x( v->px() ); 161 G4double y( v->py() ); 162 v->setPx( cZ * x - sZ * y ); 163 v->setPy( sZ * x + cZ * y ); // rotation around Z 164 x = v->px(); 165 G4double z( v->pz() ); 166 v->setPx( cY * x - sY * z ); 167 v->setPz( sY * x + cY * z ); // rotation around Y 168 } 169 170 if ( i == nmbOfOutputParticles - 1 ) 171 break; 172 173 G4double beta( pd[ i ] / std::sqrt( pd[ i ] * pd[ i ] + 174 invMas[ i ] * invMas[ i ] ) ); 175 for ( int j( 0 ); j <= i; ++j ) 176 outVec[ j ].lVec->boost( 0, beta, 0 ); 177 178 ++i; 179 } 180 181 for ( int j( 0 ); j < nmbOfOutputParticles; ++j ) 182 *outVec[ j ].lVec *= GeV; 183 184 // 185 //---> return the weigth of event 186 // 187 return wt; 188 } 189 190 191 void CexmcReimplementedGenbod::ParticleChangeHook( void ) 192 { 193 nmbOfOutputParticles = outVec.size(); 194 195 if ( nmbOfOutputParticles < 2 || nmbOfOutputParticles > maxParticles ) 196 throw CexmcException( CexmcKinematicsException ); 197 198 SetMaxWeight(); 199 } 200 201 202 void CexmcReimplementedGenbod::FermiEnergyDepStatusChangeHook( void ) 203 { 204 SetMaxWeight(); 205 } 206 207 208 void CexmcReimplementedGenbod::SetMaxWeight( void ) 209 { 210 G4double te_minus_tm( totalEnergy - totalMass ); 211 212 if ( fermiEnergyDepIsOn ) 213 { 214 // ffq[] = pi * (2*pi)**(N-2) / (N-2)! 215 G4double ffq[] = { 0 216 ,3.141592, 19.73921, 62.01255, 129.8788, 204.0131 217 ,256.3704, 268.4705, 240.9780, 189.2637 218 ,132.1308, 83.0202, 47.4210, 24.8295 219 ,12.0006, 5.3858, 2.2560, 0.8859 }; 220 maxWeight = 221 std::pow( te_minus_tm / GeV, nmbOfOutputParticles - 2 ) * 222 ffq[ nmbOfOutputParticles - 1 ] / ( totalEnergy / GeV ); 223 } 224 else 225 { 226 G4double emmax( ( te_minus_tm + outVec[ 0 ].mass ) / GeV ); 227 G4double emmin( 0. ); 228 G4double wtmax( 1. ); 229 230 for ( G4int i( 1 ); i < nmbOfOutputParticles; ++i ) 231 { 232 emmin += outVec[ i - 1 ].mass / GeV; 233 emmax += outVec[ i ].mass / GeV; 234 wtmax *= PDK( emmax, emmin, outVec[ i ].mass / GeV ); 235 } 236 maxWeight = 1 / wtmax; 237 } 238 } 239 240