Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/event/src/G4SPSAngDistribution.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // G4SPSAngDistribution class implementation
 27 //
 28 // Author: Fan Lei, QinetiQ ltd. - 05/02/2004
 29 // Customer: ESA/ESTEC
 30 // Revisions: Andrea Dotti, SLAC
 31 // --------------------------------------------------------------------
 32 
 33 #include "G4SPSAngDistribution.hh"
 34 
 35 #include "Randomize.hh"
 36 #include "G4PhysicalConstants.hh"
 37 
 38 G4SPSAngDistribution::G4SPSAngDistribution() 
 39 {
 40   // Angular distribution Variables
 41   G4ThreeVector zero;
 42   particle_momentum_direction = G4ParticleMomentum(0,0,-1);
 43 
 44   AngDistType = "planar"; 
 45   AngRef1 = CLHEP::HepXHat;
 46   AngRef2 = CLHEP::HepYHat;
 47   AngRef3 = CLHEP::HepZHat;
 48   MinTheta = 0.;
 49   MaxTheta = pi;
 50   MinPhi = 0.;
 51   MaxPhi = twopi;
 52   DR = 0.;
 53   DX = 0.;
 54   DY = 0.;
 55   FocusPoint = G4ThreeVector(0., 0., 0.);
 56   UserDistType = "NULL";
 57   UserWRTSurface = true;
 58   UserAngRef = false;
 59   IPDFThetaExist = false;
 60   IPDFPhiExist = false;
 61   verbosityLevel = 0;
 62 
 63   G4MUTEXINIT(mutex);
 64 }
 65 
 66 G4SPSAngDistribution::~G4SPSAngDistribution()
 67 {
 68     G4MUTEXDESTROY(mutex);
 69 }
 70 
 71 void G4SPSAngDistribution::SetAngDistType(const G4String& atype)
 72 {
 73   G4AutoLock l(&mutex);
 74   if(atype != "iso" && atype != "cos" && atype != "user" && atype != "planar"
 75      && atype != "beam1d" && atype != "beam2d"  && atype != "focused")
 76   {
 77     G4cout << "Error, distribution must be iso, cos, planar, beam1d, beam2d, focused or user"
 78            << G4endl;
 79   }
 80   else
 81   {
 82     AngDistType = atype;
 83   }
 84   if (AngDistType == "cos")  { MaxTheta = pi/2.; }
 85   if (AngDistType == "user")
 86   {
 87     UDefThetaH = IPDFThetaH = ZeroPhysVector;
 88     IPDFThetaExist = false;
 89     UDefPhiH = IPDFPhiH = ZeroPhysVector;
 90     IPDFPhiExist = false;
 91   }
 92 }
 93 
 94 void G4SPSAngDistribution::DefineAngRefAxes(const G4String& refname,
 95                                             const G4ThreeVector& ref)
 96 {
 97   G4AutoLock l(&mutex);
 98   if (refname == "angref1")
 99     AngRef1 = ref.unit(); // x'
100   else if (refname == "angref2")
101     AngRef2 = ref.unit(); // vector in x'y' plane
102 
103   // User defines x' (AngRef1) and a vector in the x'y'
104   // plane (AngRef2). Then, AngRef1 x AngRef2 = AngRef3
105   // the z' vector. Then, AngRef3 x AngRef1 = AngRef2
106   // which will now be y'.
107 
108   AngRef3 = AngRef1.cross(AngRef2); // z'
109   AngRef2 = AngRef3.cross(AngRef1); // y'
110   UserAngRef = true ;
111   if(verbosityLevel == 2)
112   {
113     G4cout << "Angular distribution rotation axes " << AngRef1
114            << " " << AngRef2 << " " << AngRef3 << G4endl;
115   }
116 }
117 
118 void G4SPSAngDistribution::SetMinTheta(G4double mint)
119 {
120   G4AutoLock l(&mutex);
121   MinTheta = mint;
122 }
123 
124 void G4SPSAngDistribution::SetMinPhi(G4double minp)
125 {
126   G4AutoLock l(&mutex);
127   MinPhi = minp;
128 }
129 
130 void G4SPSAngDistribution::SetMaxTheta(G4double maxt)
131 {
132   G4AutoLock l(&mutex);
133   MaxTheta = maxt;
134 }
135 
136 void G4SPSAngDistribution::SetMaxPhi(G4double maxp)
137 {
138   G4AutoLock l(&mutex);
139   MaxPhi = maxp;
140 }
141 
142 void G4SPSAngDistribution::SetBeamSigmaInAngR(G4double r)
143 {
144   G4AutoLock l(&mutex);
145   DR = r;
146 }
147 
148 void G4SPSAngDistribution::SetBeamSigmaInAngX(G4double r)
149 {
150   G4AutoLock l(&mutex);
151   DX = r;
152 }
153 
154 void G4SPSAngDistribution::SetBeamSigmaInAngY(G4double r)
155 {
156   G4AutoLock l(&mutex);
157   DY = r;
158 }
159 
160 void G4SPSAngDistribution::
161 SetParticleMomentumDirection(const G4ParticleMomentum& aMomentumDirection)
162 {
163   G4AutoLock l(&mutex);
164   particle_momentum_direction = aMomentumDirection.unit();
165 }
166 
167 void G4SPSAngDistribution::SetPosDistribution(G4SPSPosDistribution* a)
168 {
169   G4AutoLock l(&mutex);
170   posDist = a;
171 }
172 
173 void G4SPSAngDistribution::SetBiasRndm(G4SPSRandomGenerator* a)
174 {
175   G4AutoLock l(&mutex);
176   angRndm = a;
177 }
178 
179 void G4SPSAngDistribution::SetVerbosity(G4int a)
180 {
181   G4AutoLock l(&mutex);
182   verbosityLevel = a;
183 }
184 
185 void G4SPSAngDistribution::UserDefAngTheta(const G4ThreeVector& input)
186 {
187   G4AutoLock l(&mutex);
188   if(UserDistType == "NULL") UserDistType = "theta";
189   if(UserDistType == "phi") UserDistType = "both";  
190   G4double thi, val;
191   thi = input.x();
192   val = input.y();
193   if(verbosityLevel >= 1) G4cout << "In UserDefAngTheta" << G4endl;
194   UDefThetaH.InsertValues(thi, val);
195 }
196 
197 G4String G4SPSAngDistribution::GetDistType()
198 {
199   G4AutoLock l(&mutex);
200   return AngDistType;
201 }
202 
203 G4double G4SPSAngDistribution::GetMinTheta()
204 {
205   G4AutoLock l(&mutex);
206   return MinTheta;
207 }
208 
209 G4double G4SPSAngDistribution::GetMaxTheta()
210 {
211   G4AutoLock l(&mutex);
212   return MaxTheta;
213 }
214 
215 G4double G4SPSAngDistribution::GetMinPhi()
216 {
217   G4AutoLock l(&mutex);
218   return MinPhi;
219 }
220 
221 G4double G4SPSAngDistribution::GetMaxPhi()
222 {
223   G4AutoLock l(&mutex);
224   return MaxPhi;
225 }
226 
227 G4ThreeVector G4SPSAngDistribution::GetDirection()
228 {
229   G4AutoLock l(&mutex);
230   return particle_momentum_direction;
231 }
232 
233 void G4SPSAngDistribution::UserDefAngPhi(const G4ThreeVector& input)
234 {
235   G4AutoLock l(&mutex);
236   if(UserDistType == "NULL") UserDistType = "phi";
237   if(UserDistType == "theta") UserDistType = "both";  
238   G4double phhi, val;
239   phhi = input.x();
240   val = input.y();
241   if(verbosityLevel >= 1) G4cout << "In UserDefAngPhi" << G4endl;
242   UDefPhiH.InsertValues(phhi, val); 
243 }
244 
245 void G4SPSAngDistribution::SetFocusPoint(const G4ThreeVector& input)
246 {
247   G4AutoLock l(&mutex);
248   FocusPoint = input;
249 }
250 
251 void G4SPSAngDistribution::SetUserWRTSurface(G4bool wrtSurf)
252 {
253   G4AutoLock l(&mutex);
254 
255   // if UserWRTSurface = true then the user wants momenta with respect
256   // to the surface normals.
257   // When doing this theta has to be 0-90 only otherwise there will be
258   // errors, which currently are flagged anywhere.
259   //
260   UserWRTSurface = wrtSurf;
261 }
262 
263 void G4SPSAngDistribution::SetUseUserAngAxis(G4bool userang)
264 {
265   G4AutoLock l(&mutex);
266 
267   // if UserAngRef = true  the angular distribution is defined wrt 
268   // the user defined coordinates
269   //
270   UserAngRef = userang;
271 }
272 
273 void G4SPSAngDistribution::GenerateBeamFlux(G4ParticleMomentum& mom)
274 {
275   G4double theta, phi;
276   G4double px, py, pz;
277   if (AngDistType == "beam1d")
278   { 
279     theta = G4RandGauss::shoot(0.0,DR);
280     phi = twopi * G4UniformRand();
281   }
282   else 
283   {
284     px = G4RandGauss::shoot(0.0,DX);
285     py = G4RandGauss::shoot(0.0,DY);
286     theta = std::sqrt (px*px + py*py);
287     if (theta != 0.)
288     { 
289       phi = std::acos(px/theta);
290       if ( py < 0.) phi = -phi;
291     }
292     else
293     {
294       phi = 0.0;
295     }
296   }
297   px = -std::sin(theta) * std::cos(phi);
298   py = -std::sin(theta) * std::sin(phi);
299   pz = -std::cos(theta);
300   G4double finx, finy,  finz;
301   finx=px, finy=py, finz=pz;
302   if (UserAngRef)
303   {
304     // Apply Angular Rotation Matrix
305     // x * AngRef1, y * AngRef2 and z * AngRef3
306     finx = (px * AngRef1.x()) + (py * AngRef2.x()) + (pz * AngRef3.x());
307     finy = (px * AngRef1.y()) + (py * AngRef2.y()) + (pz * AngRef3.y());
308     finz = (px * AngRef1.z()) + (py * AngRef2.z()) + (pz * AngRef3.z());
309     G4double ResMag = std::sqrt((finx*finx) + (finy*finy) + (finz*finz));
310     finx = finx/ResMag;
311     finy = finy/ResMag;
312     finz = finz/ResMag;
313   }
314   mom.setX(finx);
315   mom.setY(finy);
316   mom.setZ(finz);
317 
318   // particle_momentum_direction now holds unit momentum vector
319 
320   if(verbosityLevel >= 1)
321   {
322     G4cout << "Generating beam vector: " << mom << G4endl;
323   }
324 }
325 
326 void G4SPSAngDistribution::GenerateFocusedFlux(G4ParticleMomentum& mom)
327 {
328   mom = (FocusPoint - posDist->GetParticlePos()).unit();
329 
330   // particle_momentum_direction now holds unit momentum vector.
331 
332   if(verbosityLevel >= 1)
333   {
334     G4cout << "Generating focused vector: " << mom << G4endl;
335   }
336 }
337 
338 void G4SPSAngDistribution::GenerateIsotropicFlux(G4ParticleMomentum& mom)
339 {
340   // generates isotropic flux.
341   // No vectors are needed.
342 
343   G4double rndm, rndm2;
344   G4double px, py, pz;
345 
346   G4double sintheta, sinphi,costheta,cosphi;
347   rndm = angRndm->GenRandTheta();
348   costheta = std::cos(MinTheta) - rndm * (std::cos(MinTheta)
349                                         - std::cos(MaxTheta));
350   sintheta = std::sqrt(1. - costheta*costheta);
351   
352   rndm2 = angRndm->GenRandPhi();
353   Phi = MinPhi + (MaxPhi - MinPhi) * rndm2; 
354   sinphi = std::sin(Phi);
355   cosphi = std::cos(Phi);
356 
357   px = -sintheta * cosphi;
358   py = -sintheta * sinphi;
359   pz = -costheta;
360 
361   // For volume and point source use mother or user defined coordinates
362   // for plane and surface source user surface-normal or user-defined
363   // coordinates
364   //
365   G4double finx, finy, finz;
366   if (posDist->GetSourcePosType() == "Point"
367    || posDist->GetSourcePosType() == "Volume")
368   {
369     if (UserAngRef)
370     {
371       // Apply Rotation Matrix
372       // x * AngRef1, y * AngRef2 and z * AngRef3
373       finx = (px * AngRef1.x()) + (py * AngRef2.x()) + (pz * AngRef3.x());
374       finy = (px * AngRef1.y()) + (py * AngRef2.y()) + (pz * AngRef3.y());
375       finz = (px * AngRef1.z()) + (py * AngRef2.z()) + (pz * AngRef3.z());
376     }
377     else
378     {
379       finx = px;
380       finy = py;
381       finz = pz;
382     }
383   }
384   else
385   {    // for plane and surface source   
386     if (UserAngRef)
387     {
388       // Apply Rotation Matrix
389       // x * AngRef1, y * AngRef2 and z * AngRef3
390       finx = (px * AngRef1.x()) + (py * AngRef2.x()) + (pz * AngRef3.x());
391       finy = (px * AngRef1.y()) + (py * AngRef2.y()) + (pz * AngRef3.y());
392       finz = (px * AngRef1.z()) + (py * AngRef2.z()) + (pz * AngRef3.z());
393     }
394     else
395     {
396       finx = (px*posDist->GetSideRefVec1().x())
397            + (py*posDist->GetSideRefVec2().x())
398            + (pz*posDist->GetSideRefVec3().x());
399       finy = (px*posDist->GetSideRefVec1().y())
400            + (py*posDist->GetSideRefVec2().y())
401            + (pz*posDist->GetSideRefVec3().y());
402       finz = (px*posDist->GetSideRefVec1().z())
403            + (py*posDist->GetSideRefVec2().z())
404            + (pz*posDist->GetSideRefVec3().z());
405     }
406   }
407   G4double ResMag = std::sqrt((finx*finx) + (finy*finy) + (finz*finz));
408   finx = finx/ResMag;
409   finy = finy/ResMag;
410   finz = finz/ResMag;
411 
412   mom.setX(finx);
413   mom.setY(finy);
414   mom.setZ(finz);
415 
416   // particle_momentum_direction now holds unit momentum vector.
417 
418   if(verbosityLevel >= 1)
419   {
420     G4cout << "Generating isotropic vector: " << mom << G4endl;
421   }
422 }
423 
424 void G4SPSAngDistribution::GenerateCosineLawFlux(G4ParticleMomentum& mom)
425 {
426   // Method to generate flux distributed with a cosine law
427 
428   G4double px, py, pz;
429   G4double rndm, rndm2;
430  
431   G4double sintheta, sinphi,costheta,cosphi;
432   rndm = angRndm->GenRandTheta();
433   sintheta = std::sqrt( rndm * (std::sin(MaxTheta)*std::sin(MaxTheta)
434                               - std::sin(MinTheta)*std::sin(MinTheta) ) 
435                       + std::sin(MinTheta)*std::sin(MinTheta) );
436   costheta = std::sqrt(1. -sintheta*sintheta);
437   
438   rndm2 = angRndm->GenRandPhi();
439   Phi = MinPhi + (MaxPhi - MinPhi) * rndm2; 
440   sinphi = std::sin(Phi);
441   cosphi = std::cos(Phi);
442 
443   px = -sintheta * cosphi;
444   py = -sintheta * sinphi;
445   pz = -costheta;
446 
447   // for volume and point source use mother or user defined coordinates
448   // for plane and surface source user surface-normal or userdefined
449   // coordinates
450   //
451   G4double finx, finy, finz;
452   if (posDist->GetSourcePosType() == "Point"
453    || posDist->GetSourcePosType() == "Volume")
454   {
455     if (UserAngRef)
456     {
457       // Apply Rotation Matrix
458       finx = (px * AngRef1.x()) + (py * AngRef2.x()) + (pz * AngRef3.x());
459       finy = (px * AngRef1.y()) + (py * AngRef2.y()) + (pz * AngRef3.y());
460       finz = (px * AngRef1.z()) + (py * AngRef2.z()) + (pz * AngRef3.z());
461     }
462     else
463     {
464       finx = px;
465       finy = py;
466       finz = pz;
467     }
468   }
469   else
470   {    // for plane and surface source   
471     if (UserAngRef)
472     {
473       // Apply Rotation Matrix
474       finx = (px * AngRef1.x()) + (py * AngRef2.x()) + (pz * AngRef3.x());
475       finy = (px * AngRef1.y()) + (py * AngRef2.y()) + (pz * AngRef3.y());
476       finz = (px * AngRef1.z()) + (py * AngRef2.z()) + (pz * AngRef3.z());
477     }
478     else
479     {
480       finx = (px*posDist->GetSideRefVec1().x())
481            + (py*posDist->GetSideRefVec2().x())
482            + (pz*posDist->GetSideRefVec3().x());
483       finy = (px*posDist->GetSideRefVec1().y())
484            + (py*posDist->GetSideRefVec2().y())
485            + (pz*posDist->GetSideRefVec3().y());
486       finz = (px*posDist->GetSideRefVec1().z())
487            + (py*posDist->GetSideRefVec2().z())
488            + (pz*posDist->GetSideRefVec3().z());
489     }
490   }
491   G4double ResMag = std::sqrt((finx*finx) + (finy*finy) + (finz*finz));
492   finx = finx/ResMag;
493   finy = finy/ResMag;
494   finz = finz/ResMag;
495 
496   mom.setX(finx);
497   mom.setY(finy);
498   mom.setZ(finz);
499 
500   // particle_momentum_direction now contains unit momentum vector.
501 
502   if(verbosityLevel >= 1)
503   {
504     G4cout << "Resultant cosine-law unit momentum vector " << mom << G4endl;
505   }
506 }
507 
508 void G4SPSAngDistribution::GeneratePlanarFlux(G4ParticleMomentum& mom)
509 {
510   // particle_momentum_direction now contains unit momentum vector.
511   // nothing need be done here as the m-directions have been set directly
512   // under this option
513 
514   if(verbosityLevel >= 1)
515   {
516     G4cout << "Resultant Planar wave  momentum vector " << mom << G4endl;
517   }
518 }
519 
520 void G4SPSAngDistribution::GenerateUserDefFlux(G4ParticleMomentum& mom)
521 {
522   G4double rndm, px, py, pz, pmag;
523 
524   if(UserDistType == "NULL")
525   {
526     G4cout << "Error: UserDistType undefined" << G4endl;
527   }
528   else if(UserDistType == "theta")
529   {
530     Theta = 10.;
531     while(Theta > MaxTheta || Theta < MinTheta)
532     {
533       Theta = GenerateUserDefTheta();
534     }
535     Phi = 10.;
536     while(Phi > MaxPhi || Phi < MinPhi)
537     {
538       rndm = angRndm->GenRandPhi();
539       Phi = twopi * rndm;
540     }
541   }
542   else if(UserDistType == "phi")
543   {
544     Theta = 10.;
545     while(Theta > MaxTheta || Theta < MinTheta)
546     {
547       rndm = angRndm->GenRandTheta();
548       Theta = std::acos(1. - (2. * rndm));
549     }
550     Phi = 10.;
551     while(Phi > MaxPhi || Phi < MinPhi)
552     {
553       Phi = GenerateUserDefPhi();
554     }
555   }
556   else if(UserDistType == "both")
557   {
558     Theta = 10.;
559     while(Theta > MaxTheta || Theta < MinTheta)
560     {
561       Theta = GenerateUserDefTheta();
562     }
563     Phi = 10.;
564     while(Phi > MaxPhi || Phi < MinPhi)
565     {
566       Phi = GenerateUserDefPhi();
567     }
568   }
569   px = -std::sin(Theta) * std::cos(Phi);
570   py = -std::sin(Theta) * std::sin(Phi);
571   pz = -std::cos(Theta);
572 
573   pmag = std::sqrt((px*px) + (py*py) + (pz*pz));
574 
575   if(!UserWRTSurface)
576   {
577     G4double finx, finy, finz;      
578     if (UserAngRef)
579     {
580       // Apply Rotation Matrix
581       // x * AngRef1, y * AngRef2 and z * AngRef3
582       finx = (px * AngRef1.x()) + (py * AngRef2.x()) + (pz * AngRef3.x());
583       finy = (px * AngRef1.y()) + (py * AngRef2.y()) + (pz * AngRef3.y());
584       finz = (px * AngRef1.z()) + (py * AngRef2.z()) + (pz * AngRef3.z());
585     }
586     else    // use mother coordinates
587     {
588       finx = px;
589       finy = py;
590       finz = pz;
591     }
592     G4double ResMag = std::sqrt((finx*finx) + (finy*finy) + (finz*finz));
593     finx = finx/ResMag;
594     finy = finy/ResMag;
595     finz = finz/ResMag;
596     
597     mom.setX(finx);
598     mom.setY(finy);
599     mom.setZ(finz);
600   } 
601   else    // UserWRTSurface = true
602   {
603     G4double pxh = px/pmag;
604     G4double pyh = py/pmag;
605     G4double pzh = pz/pmag;
606     if(verbosityLevel > 1)
607     {
608       G4cout << "SideRefVecs " << posDist->GetSideRefVec1()
609              << posDist->GetSideRefVec2() << posDist->GetSideRefVec3()
610              << G4endl;
611       G4cout << "Raw Unit vector " << pxh
612              << "," << pyh << "," << pzh << G4endl;
613     }
614     G4double resultx = (pxh*posDist->GetSideRefVec1().x())
615                      + (pyh*posDist->GetSideRefVec2().x())
616                      + (pzh*posDist->GetSideRefVec3().x());
617     
618     G4double resulty = (pxh*posDist->GetSideRefVec1().y())
619                      + (pyh*posDist->GetSideRefVec2().y())
620                      + (pzh*posDist->GetSideRefVec3().y());
621     
622     G4double resultz = (pxh*posDist->GetSideRefVec1().z())
623                      + (pyh*posDist->GetSideRefVec2().z())
624                      + (pzh*posDist->GetSideRefVec3().z());
625     
626     G4double ResMag = std::sqrt((resultx*resultx)
627                               + (resulty*resulty)
628                               + (resultz*resultz));
629     resultx = resultx/ResMag;
630     resulty = resulty/ResMag;
631     resultz = resultz/ResMag;
632     
633     mom.setX(resultx);
634     mom.setY(resulty);
635     mom.setZ(resultz);
636   }
637   
638   // particle_momentum_direction now contains unit momentum vector.
639 
640   if(verbosityLevel > 0 )
641   {
642     G4cout << "Final User Defined momentum vector "
643            << particle_momentum_direction << G4endl;
644   }
645 }
646 
647 G4double G4SPSAngDistribution::GenerateUserDefTheta()
648 {
649   // Create cumulative histogram if not already done so.
650   // Then use RandFlat::shoot to generate the output Theta value.
651 
652   if(UserDistType == "NULL" || UserDistType == "phi")
653   {
654     // No user defined theta distribution
655     G4cout << "Error ***********************" << G4endl;
656     G4cout << "UserDistType = " << UserDistType << G4endl;
657     return (0.);
658   }
659   
660   // UserDistType = theta or both and so a theta distribution
661   // is defined. This should be integrated if not already done.
662   G4AutoLock l(&mutex);
663   if(!IPDFThetaExist)
664   {
665     // IPDF has not been created, so create it
666     //
667     G4double bins[1024],vals[1024], sum;
668     G4int ii;
669     auto  maxbin = G4int(UDefThetaH.GetVectorLength());
670     bins[0] = UDefThetaH.GetLowEdgeEnergy(std::size_t(0));
671     vals[0] = UDefThetaH(std::size_t(0));
672     sum = vals[0];
673     for(ii=1; ii<maxbin; ++ii)
674     {
675       bins[ii] = UDefThetaH.GetLowEdgeEnergy(std::size_t(ii));
676       vals[ii] = UDefThetaH(std::size_t(ii)) + vals[ii-1];
677       sum = sum + UDefThetaH(std::size_t(ii));
678     }
679     for(ii=0; ii<maxbin; ++ii)
680     {
681       vals[ii] = vals[ii]/sum;
682       IPDFThetaH.InsertValues(bins[ii], vals[ii]);
683     }
684       IPDFThetaExist = true;
685   }
686   l.unlock();
687 
688   // IPDF has been created so carry on
689   //
690   G4double rndm = G4UniformRand();
691   return IPDFThetaH.GetEnergy(rndm);
692 }
693 
694 G4double G4SPSAngDistribution::GenerateUserDefPhi()
695 {
696   // Create cumulative histogram if not already done so.
697   // Then use RandFlat::shoot to generate the output Theta value.
698 
699   if(UserDistType == "NULL" || UserDistType == "theta")
700   {
701     // No user defined phi distribution
702     G4cout << "Error ***********************" << G4endl;
703     G4cout << "UserDistType = " << UserDistType << G4endl;
704     return(0.);
705   }
706   
707   // UserDistType = phi or both and so a phi distribution
708   // is defined. This should be integrated if not already done.
709   G4AutoLock l(&mutex);
710   if(!IPDFPhiExist)
711   {
712     // IPDF has not been created, so create it
713     //
714     G4double bins[1024],vals[1024], sum;
715     G4int ii;
716     auto  maxbin = G4int(UDefPhiH.GetVectorLength());
717     bins[0] = UDefPhiH.GetLowEdgeEnergy(std::size_t(0));
718     vals[0] = UDefPhiH(std::size_t(0));
719     sum = vals[0];
720     for(ii=1; ii<maxbin; ++ii)
721     {
722       bins[ii] = UDefPhiH.GetLowEdgeEnergy(std::size_t(ii));
723       vals[ii] = UDefPhiH(std::size_t(ii)) + vals[ii-1];
724       sum = sum + UDefPhiH(std::size_t(ii));
725     }
726     for(ii=0; ii<maxbin; ++ii)
727     {
728       vals[ii] = vals[ii]/sum;
729       IPDFPhiH.InsertValues(bins[ii], vals[ii]);
730     }
731     IPDFPhiExist = true;
732   }
733   l.unlock();
734 
735   // IPDF has been create so carry on
736   //
737   G4double rndm = G4UniformRand();
738   return IPDFPhiH.GetEnergy(rndm); 
739 }
740 
741 void G4SPSAngDistribution::ReSetHist(const G4String& atype)
742 {
743   G4AutoLock l(&mutex);
744   if (atype == "theta")
745   {
746     UDefThetaH = IPDFThetaH = ZeroPhysVector ;
747     IPDFThetaExist = false ;
748   }
749   else if (atype == "phi")
750   {    
751     UDefPhiH = IPDFPhiH = ZeroPhysVector ;
752     IPDFPhiExist = false ;
753   } 
754   else
755   {
756     G4cout << "Error, histtype not accepted " << G4endl;
757   }
758 }
759 
760 G4ParticleMomentum G4SPSAngDistribution::GenerateOne()
761 {
762   // Local copy for thread safety
763   //
764   G4ParticleMomentum localM = particle_momentum_direction;
765 
766   // Angular stuff
767   //
768   if(AngDistType == "iso")
769     GenerateIsotropicFlux(localM);
770   else if(AngDistType == "cos")
771     GenerateCosineLawFlux(localM);
772   else if(AngDistType == "planar")
773     GeneratePlanarFlux(localM);
774   else if(AngDistType == "beam1d" || AngDistType == "beam2d" )
775     GenerateBeamFlux(localM);
776   else if(AngDistType == "user")
777     GenerateUserDefFlux(localM);
778   else if(AngDistType == "focused")
779     GenerateFocusedFlux(localM);
780   else
781     G4cout << "Error: AngDistType has unusual value" << G4endl;
782   return localM;
783 }
784