Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4GMocrenIO.cc,v 1.6 2010-11-10 23:53:23 akimura Exp $ >> 28 // GEANT4 tag $Name: not supported by cvs2svn $ 27 // 29 // 28 // 30 // 29 // File I/O manager class for writing or readi 31 // File I/O manager class for writing or reading calcuated dose 30 // distribution and some event information 32 // distribution and some event information 31 // 33 // 32 // Created: Mar. 31, 2009 Akinori Kimura : r 34 // Created: Mar. 31, 2009 Akinori Kimura : release for the gMocrenFile driver 33 // 35 // 34 // Akinori Kimur 36 // Akinori Kimura 35 // gMocren home 37 // gMocren home page: 36 // http://geant4 38 // http://geant4.kek.jp/gMocren/ 37 // 39 // 38 // 40 // 39 #include "G4GMocrenIO.hh" 41 #include "G4GMocrenIO.hh" 40 #include <iostream> 42 #include <iostream> 41 #include <ctime> 43 #include <ctime> 42 #include <sstream> 44 #include <sstream> 43 #include <iomanip> 45 #include <iomanip> 44 #include <cstdlib> 46 #include <cstdlib> 45 #include <cstring> 47 #include <cstring> 46 48 47 #include "globals.hh" 49 #include "globals.hh" 48 #include "G4VisManager.hh" 50 #include "G4VisManager.hh" 49 51 50 #if defined(_WIN32) 52 #if defined(_WIN32) 51 #define LITTLE_ENDIAN 1234 53 #define LITTLE_ENDIAN 1234 52 #define BYTE_ORDER LITTLE_ENDIAN 54 #define BYTE_ORDER LITTLE_ENDIAN 53 #endif 55 #endif 54 56 55 const int DOSERANGE = 25000; 57 const int DOSERANGE = 25000; 56 58 57 //----- GMocrenDataPrimitive class in the GMoc 59 //----- GMocrenDataPrimitive class in the GMocrenDataIO class-----// 58 template <typename T> 60 template <typename T> 59 GMocrenDataPrimitive<T>::GMocrenDataPrimitive 61 GMocrenDataPrimitive<T>::GMocrenDataPrimitive () { 60 clear(); 62 clear(); 61 } 63 } 62 template <typename T> 64 template <typename T> 63 GMocrenDataPrimitive<T>::~GMocrenDataPrimitive 65 GMocrenDataPrimitive<T>::~GMocrenDataPrimitive () { 64 /* 66 /* 65 std::vector<short *>::iterator itr = image 67 std::vector<short *>::iterator itr = image.begin(); 66 for(; itr != image.end(); itr++) { 68 for(; itr != image.end(); itr++) { 67 delete [] *itr; 69 delete [] *itr; 68 } 70 } 69 */ 71 */ 70 } 72 } 71 73 72 template <typename T> GMocrenDataPrimitive<T> 74 template <typename T> GMocrenDataPrimitive<T> & 73 GMocrenDataPrimitive<T>::operator = (const GMo 75 GMocrenDataPrimitive<T>::operator = (const GMocrenDataPrimitive<T> & _right) { 74 if (this == &_right) return *this; << 75 for(int i = 0; i < 3; i++) { 76 for(int i = 0; i < 3; i++) { 76 kSize[i] = _right.kSize[i]; 77 kSize[i] = _right.kSize[i]; 77 kCenter[i] = _right.kCenter[i]; 78 kCenter[i] = _right.kCenter[i]; 78 } 79 } 79 kScale = _right.kScale; 80 kScale = _right.kScale; 80 for(int i = 0; i < 2; i++) kMinmax[i] = _rig 81 for(int i = 0; i < 2; i++) kMinmax[i] = _right.kMinmax[i]; 81 int num = kSize[0]*kSize[1]; 82 int num = kSize[0]*kSize[1]; 82 kImage.clear(); 83 kImage.clear(); 83 for(int z = 0; z < kSize[2]; z++) { 84 for(int z = 0; z < kSize[2]; z++) { 84 T * img = new T[num]; 85 T * img = new T[num]; 85 for(int i = 0; i < num; i++) img[i] =_righ 86 for(int i = 0; i < num; i++) img[i] =_right.kImage[z][i]; 86 kImage.push_back(img); 87 kImage.push_back(img); 87 } 88 } 88 return *this; 89 return *this; 89 } 90 } 90 91 91 template <typename T> GMocrenDataPrimitive<T> 92 template <typename T> GMocrenDataPrimitive<T> & 92 GMocrenDataPrimitive<T>::operator + (const GMo 93 GMocrenDataPrimitive<T>::operator + (const GMocrenDataPrimitive<T> & _right) { 93 94 94 GMocrenDataPrimitive<T> rprim; 95 GMocrenDataPrimitive<T> rprim; 95 bool stat = true; 96 bool stat = true; 96 for(int i = 0; i < 3; i++) { 97 for(int i = 0; i < 3; i++) { 97 if(kSize[i] != _right.kSize[i]) stat = fal 98 if(kSize[i] != _right.kSize[i]) stat = false; 98 if(kCenter[i] != _right.kCenter[i]) stat = 99 if(kCenter[i] != _right.kCenter[i]) stat = false; 99 } 100 } 100 if(!stat) { 101 if(!stat) { 101 if (G4VisManager::GetVerbosity() >= G4VisM 102 if (G4VisManager::GetVerbosity() >= G4VisManager::errors) 102 G4cout << "Warning: operator + " 103 G4cout << "Warning: operator + " 103 << " Cannot do the operator +" 104 << " Cannot do the operator +" 104 << G4endl; 105 << G4endl; 105 return *this; 106 return *this; 106 } 107 } 107 108 108 rprim.setSize(kSize); 109 rprim.setSize(kSize); 109 rprim.setCenterPosition(kCenter); 110 rprim.setCenterPosition(kCenter); 110 111 111 T mms[2] = {9e100,-9e100}; << 112 T mm[2] = {9e100,-9e100}; 112 //if(mms[0] > _right.minmax[0]) mms[0] = _ri << 113 //if(mm[0] > _right.minmax[0]) mm[0] = _right.minmax[0]; 113 //if(mms[1] < _right.minmax[1]) mms[1] = _ri << 114 //if(mm[1] < _right.minmax[1]) mm[1] = _right.minmax[1]; 114 115 115 int num = kSize[0]*kSize[1]; 116 int num = kSize[0]*kSize[1]; 116 for(int z = 0; z < kSize[2]; z++) { 117 for(int z = 0; z < kSize[2]; z++) { 117 T * img = new T[num]; 118 T * img = new T[num]; 118 for(int xy = 0; xy < num; xy++) { 119 for(int xy = 0; xy < num; xy++) { 119 img[xy] = kImage[z][xy] + _right.kImage[ 120 img[xy] = kImage[z][xy] + _right.kImage[z][xy]; 120 if(mms[0] > img[xy]) mms[0] = img[xy]; << 121 if(mm[0] > img[xy]) mm[0] = img[xy]; 121 if(mms[1] < img[xy]) mms[1] = img[xy]; << 122 if(mm[1] < img[xy]) mm[1] = img[xy]; 122 } 123 } 123 rprim.addImage(img); 124 rprim.addImage(img); 124 } 125 } 125 rprim.setMinMax(mms); << 126 rprim.setMinMax(mm); 126 127 127 T scl = mms[1]/DOSERANGE; << 128 T scl = mm[1]/DOSERANGE; 128 rprim.setScale(scl); 129 rprim.setScale(scl); 129 130 130 return rprim; 131 return rprim; 131 } 132 } 132 133 133 template <typename T> GMocrenDataPrimitive<T> 134 template <typename T> GMocrenDataPrimitive<T> & 134 GMocrenDataPrimitive<T>::operator += (const GM 135 GMocrenDataPrimitive<T>::operator += (const GMocrenDataPrimitive<T> & _right) { 135 136 136 bool stat = true; 137 bool stat = true; 137 for(int i = 0; i < 3; i++) { 138 for(int i = 0; i < 3; i++) { 138 if(kSize[i] != _right.kSize[i]) stat = fal 139 if(kSize[i] != _right.kSize[i]) stat = false; 139 if(kCenter[i] != _right.kCenter[i]) stat = 140 if(kCenter[i] != _right.kCenter[i]) stat = false; 140 } 141 } 141 if(!stat) { 142 if(!stat) { 142 if (G4VisManager::GetVerbosity() >= G4VisM 143 if (G4VisManager::GetVerbosity() >= G4VisManager::errors) 143 G4cout << "Warning: operator += " << G4e 144 G4cout << "Warning: operator += " << G4endl 144 << " Cannot do the operator +=" 145 << " Cannot do the operator +=" 145 << G4endl; 146 << G4endl; 146 return *this; 147 return *this; 147 } 148 } 148 149 149 if(kMinmax[0] > _right.kMinmax[0]) kMinmax[0 150 if(kMinmax[0] > _right.kMinmax[0]) kMinmax[0] = _right.kMinmax[0]; 150 if(kMinmax[1] < _right.kMinmax[1]) kMinmax[1 151 if(kMinmax[1] < _right.kMinmax[1]) kMinmax[1] = _right.kMinmax[1]; 151 152 152 int num = kSize[0]*kSize[1]; 153 int num = kSize[0]*kSize[1]; 153 for(int z = 0; z < kSize[2]; z++) { 154 for(int z = 0; z < kSize[2]; z++) { 154 for(int xy = 0; xy < num; xy++) { 155 for(int xy = 0; xy < num; xy++) { 155 kImage[z][xy] += _right.kImage[z][xy]; 156 kImage[z][xy] += _right.kImage[z][xy]; 156 if(kMinmax[0] > kImage[z][xy]) kMinmax[0 157 if(kMinmax[0] > kImage[z][xy]) kMinmax[0] = kImage[z][xy]; 157 if(kMinmax[1] < kImage[z][xy]) kMinmax[1 158 if(kMinmax[1] < kImage[z][xy]) kMinmax[1] = kImage[z][xy]; 158 } 159 } 159 } 160 } 160 161 161 kScale = kMinmax[1]/DOSERANGE; 162 kScale = kMinmax[1]/DOSERANGE; 162 163 163 return *this; 164 return *this; 164 } 165 } 165 166 166 template <typename T> 167 template <typename T> 167 void GMocrenDataPrimitive<T>::clear() { 168 void GMocrenDataPrimitive<T>::clear() { 168 for(int i = 0; i < 3; i++) { 169 for(int i = 0; i < 3; i++) { 169 kSize[i] = 0; 170 kSize[i] = 0; 170 kCenter[i] = 0.; 171 kCenter[i] = 0.; 171 } 172 } 172 kScale = 1.; 173 kScale = 1.; 173 kMinmax[0] = (T)32109; 174 kMinmax[0] = (T)32109; 174 kMinmax[1] = (T)-32109; 175 kMinmax[1] = (T)-32109; 175 176 176 clearImage(); 177 clearImage(); 177 } 178 } 178 template <typename T> 179 template <typename T> 179 void GMocrenDataPrimitive<T>::clearImage() { 180 void GMocrenDataPrimitive<T>::clearImage() { 180 typename std::vector<T *>::iterator itr; 181 typename std::vector<T *>::iterator itr; 181 for(itr = kImage.begin(); itr != kImage.end( 182 for(itr = kImage.begin(); itr != kImage.end(); itr++) { 182 delete [] *itr; 183 delete [] *itr; 183 } 184 } 184 kImage.clear(); 185 kImage.clear(); 185 } 186 } 186 template <typename T> 187 template <typename T> 187 void GMocrenDataPrimitive<T>::setSize(int _siz 188 void GMocrenDataPrimitive<T>::setSize(int _size[3]) { 188 for(int i = 0; i < 3; i++) kSize[i] = _size[ 189 for(int i = 0; i < 3; i++) kSize[i] = _size[i]; 189 } 190 } 190 template <typename T> 191 template <typename T> 191 void GMocrenDataPrimitive<T>::getSize(int _siz 192 void GMocrenDataPrimitive<T>::getSize(int _size[3]) { 192 for(int i = 0; i < 3; i++) _size[i] = kSize[ 193 for(int i = 0; i < 3; i++) _size[i] = kSize[i]; 193 } 194 } 194 template <typename T> 195 template <typename T> 195 void GMocrenDataPrimitive<T>::setScale(double 196 void GMocrenDataPrimitive<T>::setScale(double & _scale) { 196 kScale = _scale; 197 kScale = _scale; 197 } 198 } 198 template <typename T> 199 template <typename T> 199 double GMocrenDataPrimitive<T>::getScale() { 200 double GMocrenDataPrimitive<T>::getScale() { 200 return kScale; 201 return kScale; 201 } 202 } 202 template <typename T> 203 template <typename T> 203 void GMocrenDataPrimitive<T>::setMinMax(T _min 204 void GMocrenDataPrimitive<T>::setMinMax(T _minmax[2]) { 204 for(int i = 0; i < 2; i++) kMinmax[i] = _min 205 for(int i = 0; i < 2; i++) kMinmax[i] = _minmax[i]; 205 } 206 } 206 template <typename T> 207 template <typename T> 207 void GMocrenDataPrimitive<T>::getMinMax(T _min 208 void GMocrenDataPrimitive<T>::getMinMax(T _minmax[2]) { 208 for(int i = 0; i < 2; i++) _minmax[i] = kMin 209 for(int i = 0; i < 2; i++) _minmax[i] = kMinmax[i]; 209 210 210 } 211 } 211 template <typename T> 212 template <typename T> 212 void GMocrenDataPrimitive<T>::setImage(std::ve 213 void GMocrenDataPrimitive<T>::setImage(std::vector<T *> & _image) { 213 kImage = _image; 214 kImage = _image; 214 } 215 } 215 template <typename T> 216 template <typename T> 216 void GMocrenDataPrimitive<T>::addImage(T * _im 217 void GMocrenDataPrimitive<T>::addImage(T * _image) { 217 kImage.push_back(_image); 218 kImage.push_back(_image); 218 } 219 } 219 template <typename T> 220 template <typename T> 220 std::vector<T *> & GMocrenDataPrimitive<T>::ge 221 std::vector<T *> & GMocrenDataPrimitive<T>::getImage() { 221 return kImage; 222 return kImage; 222 } 223 } 223 template <typename T> 224 template <typename T> 224 T * GMocrenDataPrimitive<T>::getImage(int _z) 225 T * GMocrenDataPrimitive<T>::getImage(int _z) { 225 if(_z >= (int)kImage.size()) return 0; 226 if(_z >= (int)kImage.size()) return 0; 226 return kImage[_z]; 227 return kImage[_z]; 227 } 228 } 228 template <typename T> 229 template <typename T> 229 void GMocrenDataPrimitive<T>::setCenterPositio 230 void GMocrenDataPrimitive<T>::setCenterPosition(float _center[3]) { 230 for(int i = 0; i < 3; i++) kCenter[i] = _cen 231 for(int i = 0; i < 3; i++) kCenter[i] = _center[i]; 231 } 232 } 232 template <typename T> 233 template <typename T> 233 void GMocrenDataPrimitive<T>::getCenterPositio 234 void GMocrenDataPrimitive<T>::getCenterPosition(float _center[3]) { 234 for(int i = 0; i < 3; i++) _center[i] = kCen 235 for(int i = 0; i < 3; i++) _center[i] = kCenter[i]; 235 } 236 } 236 template <typename T> 237 template <typename T> 237 void GMocrenDataPrimitive<T>::setName(std::str 238 void GMocrenDataPrimitive<T>::setName(std::string & _name) { 238 kDataName = _name; 239 kDataName = _name; 239 } 240 } 240 template <typename T> 241 template <typename T> 241 std::string GMocrenDataPrimitive<T>::getName() 242 std::string GMocrenDataPrimitive<T>::getName() { 242 return kDataName; 243 return kDataName; 243 } 244 } 244 245 245 246 246 247 247 248 248 249 249 GMocrenTrack::GMocrenTrack() { 250 GMocrenTrack::GMocrenTrack() { 250 kTrack.clear(); 251 kTrack.clear(); 251 for(int i = 0; i < 3; i++) kColor[i] = 0; 252 for(int i = 0; i < 3; i++) kColor[i] = 0; 252 } 253 } 253 254 254 void GMocrenTrack::addStep(float _startx, floa 255 void GMocrenTrack::addStep(float _startx, float _starty, float _startz, 255 float _endx, float _endy, float _endz 256 float _endx, float _endy, float _endz) { 256 struct Step step; 257 struct Step step; 257 step.startPoint[0] = _startx; 258 step.startPoint[0] = _startx; 258 step.startPoint[1] = _starty; 259 step.startPoint[1] = _starty; 259 step.startPoint[2] = _startz; 260 step.startPoint[2] = _startz; 260 step.endPoint[0] = _endx; 261 step.endPoint[0] = _endx; 261 step.endPoint[1] = _endy; 262 step.endPoint[1] = _endy; 262 step.endPoint[2] = _endz; 263 step.endPoint[2] = _endz; 263 kTrack.push_back(step); 264 kTrack.push_back(step); 264 } 265 } 265 void GMocrenTrack::getStep(float & _startx, fl 266 void GMocrenTrack::getStep(float & _startx, float & _starty, float & _startz, 266 float & _endx, float & _endy, float & 267 float & _endx, float & _endy, float & _endz, 267 int _num) { 268 int _num) { 268 if(_num >= (int)kTrack.size()) { 269 if(_num >= (int)kTrack.size()) { 269 if (G4VisManager::GetVerbosity() >= G4VisM 270 if (G4VisManager::GetVerbosity() >= G4VisManager::errors) 270 G4cout << "GMocrenTrack::getStep(...) Er 271 G4cout << "GMocrenTrack::getStep(...) Error: " 271 << "invalid step # : " << _num << G4end 272 << "invalid step # : " << _num << G4endl; 272 return; 273 return; 273 } 274 } 274 275 275 _startx = kTrack[_num].startPoint[0]; 276 _startx = kTrack[_num].startPoint[0]; 276 _starty = kTrack[_num].startPoint[1]; 277 _starty = kTrack[_num].startPoint[1]; 277 _startz = kTrack[_num].startPoint[2]; 278 _startz = kTrack[_num].startPoint[2]; 278 _endx = kTrack[_num].endPoint[0]; 279 _endx = kTrack[_num].endPoint[0]; 279 _endy = kTrack[_num].endPoint[1]; 280 _endy = kTrack[_num].endPoint[1]; 280 _endz = kTrack[_num].endPoint[2]; 281 _endz = kTrack[_num].endPoint[2]; 281 } 282 } 282 void GMocrenTrack::translate(std::vector<float 283 void GMocrenTrack::translate(std::vector<float> & _translate) { 283 std::vector<struct Step>::iterator itr = kTr 284 std::vector<struct Step>::iterator itr = kTrack.begin(); 284 for(; itr != kTrack.end(); itr++) { 285 for(; itr != kTrack.end(); itr++) { 285 for(int i = 0; i < 3; i++ ) { 286 for(int i = 0; i < 3; i++ ) { 286 itr->startPoint[i] += _translate[i]; 287 itr->startPoint[i] += _translate[i]; 287 itr->endPoint[i] += _translate[i]; 288 itr->endPoint[i] += _translate[i]; 288 } 289 } 289 } 290 } 290 } 291 } 291 292 292 293 293 294 294 295 295 296 296 297 297 298 298 299 299 300 300 GMocrenDetector::GMocrenDetector() { 301 GMocrenDetector::GMocrenDetector() { 301 kDetector.clear(); 302 kDetector.clear(); 302 for(int i = 0; i < 3; i++) kColor[i] = 0; 303 for(int i = 0; i < 3; i++) kColor[i] = 0; 303 } 304 } 304 305 305 void GMocrenDetector::addEdge(float _startx, f 306 void GMocrenDetector::addEdge(float _startx, float _starty, float _startz, 306 float _endx, float _endy, float _e 307 float _endx, float _endy, float _endz) { 307 struct Edge edge; 308 struct Edge edge; 308 edge.startPoint[0] = _startx; 309 edge.startPoint[0] = _startx; 309 edge.startPoint[1] = _starty; 310 edge.startPoint[1] = _starty; 310 edge.startPoint[2] = _startz; 311 edge.startPoint[2] = _startz; 311 edge.endPoint[0] = _endx; 312 edge.endPoint[0] = _endx; 312 edge.endPoint[1] = _endy; 313 edge.endPoint[1] = _endy; 313 edge.endPoint[2] = _endz; 314 edge.endPoint[2] = _endz; 314 kDetector.push_back(edge); 315 kDetector.push_back(edge); 315 } 316 } 316 void GMocrenDetector::getEdge(float & _startx, 317 void GMocrenDetector::getEdge(float & _startx, float & _starty, float & _startz, 317 float & _endx, float & _endy, float & 318 float & _endx, float & _endy, float & _endz, 318 int _num) { 319 int _num) { 319 if(_num >= (int)kDetector.size()) { 320 if(_num >= (int)kDetector.size()) { 320 if (G4VisManager::GetVerbosity() >= G4VisM 321 if (G4VisManager::GetVerbosity() >= G4VisManager::errors) 321 G4cout << "GMocrenDetector::getEdge(...) 322 G4cout << "GMocrenDetector::getEdge(...) Error: " 322 << "invalid edge # : " << _num << G4end 323 << "invalid edge # : " << _num << G4endl; 323 return; 324 return; 324 } 325 } 325 326 326 _startx = kDetector[_num].startPoint[0]; 327 _startx = kDetector[_num].startPoint[0]; 327 _starty = kDetector[_num].startPoint[1]; 328 _starty = kDetector[_num].startPoint[1]; 328 _startz = kDetector[_num].startPoint[2]; 329 _startz = kDetector[_num].startPoint[2]; 329 _endx = kDetector[_num].endPoint[0]; 330 _endx = kDetector[_num].endPoint[0]; 330 _endy = kDetector[_num].endPoint[1]; 331 _endy = kDetector[_num].endPoint[1]; 331 _endz = kDetector[_num].endPoint[2]; 332 _endz = kDetector[_num].endPoint[2]; 332 } 333 } 333 void GMocrenDetector::translate(std::vector<fl 334 void GMocrenDetector::translate(std::vector<float> & _translate) { 334 std::vector<struct Edge>::iterator itr = kDe 335 std::vector<struct Edge>::iterator itr = kDetector.begin(); 335 for(; itr != kDetector.end(); itr++) { 336 for(; itr != kDetector.end(); itr++) { 336 for(int i = 0; i < 3; i++) { 337 for(int i = 0; i < 3; i++) { 337 itr->startPoint[i] += _translate[i]; 338 itr->startPoint[i] += _translate[i]; 338 itr->endPoint[i] += _translate[i]; 339 itr->endPoint[i] += _translate[i]; 339 } 340 } 340 } 341 } 341 } 342 } 342 343 343 344 344 345 345 346 346 347 347 348 348 349 349 350 350 351 351 // file information 352 // file information 352 std::string G4GMocrenIO::kId; 353 std::string G4GMocrenIO::kId; 353 std::string G4GMocrenIO::kVersion = "2.0.0"; 354 std::string G4GMocrenIO::kVersion = "2.0.0"; 354 int G4GMocrenIO::kNumberOfEvents = 0; 355 int G4GMocrenIO::kNumberOfEvents = 0; 355 char G4GMocrenIO::kLittleEndianInput = true; 356 char G4GMocrenIO::kLittleEndianInput = true; 356 357 357 #if BYTE_ORDER == LITTLE_ENDIAN 358 #if BYTE_ORDER == LITTLE_ENDIAN 358 char G4GMocrenIO::kLittleEndianOutput = true; 359 char G4GMocrenIO::kLittleEndianOutput = true; 359 #else 360 #else 360 char G4GMocrenIO::kLittleEndianOutput = false; 361 char G4GMocrenIO::kLittleEndianOutput = false; // Big endian 361 #endif 362 #endif 362 std::string G4GMocrenIO::kComment; 363 std::string G4GMocrenIO::kComment; 363 // 364 // 364 std::string G4GMocrenIO::kFileName = "dose.gdd 365 std::string G4GMocrenIO::kFileName = "dose.gdd"; 365 366 366 // 367 // 367 unsigned int G4GMocrenIO::kPointerToModalityDa 368 unsigned int G4GMocrenIO::kPointerToModalityData = 0; 368 std::vector<unsigned int> G4GMocrenIO::kPointe 369 std::vector<unsigned int> G4GMocrenIO::kPointerToDoseDistData; 369 unsigned int G4GMocrenIO::kPointerToROIData = 370 unsigned int G4GMocrenIO::kPointerToROIData = 0; 370 unsigned int G4GMocrenIO::kPointerToTrackData 371 unsigned int G4GMocrenIO::kPointerToTrackData = 0; 371 unsigned int G4GMocrenIO::kPointerToDetectorDa 372 unsigned int G4GMocrenIO::kPointerToDetectorData = 0; 372 373 373 // modality 374 // modality 374 float G4GMocrenIO::kVoxelSpacing[3] = {0., 0., 375 float G4GMocrenIO::kVoxelSpacing[3] = {0., 0., 0.}; 375 class GMocrenDataPrimitive<short> G4GMocrenIO 376 class GMocrenDataPrimitive<short> G4GMocrenIO::kModality; 376 std::vector<float> G4GMocrenIO::kModalityImage 377 std::vector<float> G4GMocrenIO::kModalityImageDensityMap; 377 std::string G4GMocrenIO::kModalityUnit = "g/cm 378 std::string G4GMocrenIO::kModalityUnit = "g/cm3 "; // 12 Bytes 378 379 379 // dose 380 // dose 380 std::vector<class GMocrenDataPrimitive<double> 381 std::vector<class GMocrenDataPrimitive<double> > G4GMocrenIO::kDose; 381 std::string G4GMocrenIO::kDoseUnit = "keV 382 std::string G4GMocrenIO::kDoseUnit = "keV "; // 12 Bytes 382 383 383 // ROI 384 // ROI 384 std::vector<class GMocrenDataPrimitive<short> 385 std::vector<class GMocrenDataPrimitive<short> > G4GMocrenIO::kRoi; 385 386 386 // track 387 // track 387 std::vector<float *> G4GMocrenIO::kSteps; 388 std::vector<float *> G4GMocrenIO::kSteps; 388 std::vector<unsigned char *> G4GMocrenIO::kSte 389 std::vector<unsigned char *> G4GMocrenIO::kStepColors; 389 std::vector<class GMocrenTrack> G4GMocrenIO::k 390 std::vector<class GMocrenTrack> G4GMocrenIO::kTracks; 390 391 391 // detector 392 // detector 392 std::vector<class GMocrenDetector> G4GMocrenIO 393 std::vector<class GMocrenDetector> G4GMocrenIO::kDetectors; 393 394 394 // verbose 395 // verbose 395 int G4GMocrenIO::kVerbose = 0; 396 int G4GMocrenIO::kVerbose = 0; 396 397 397 const int IDLENGTH = 21; 398 const int IDLENGTH = 21; 398 const int VERLENGTH = 6; 399 const int VERLENGTH = 6; 399 400 400 // constructor 401 // constructor 401 G4GMocrenIO::G4GMocrenIO() 402 G4GMocrenIO::G4GMocrenIO() 402 : kTracksWillBeStored(true) { 403 : kTracksWillBeStored(true) { 403 ; 404 ; 404 } 405 } 405 406 406 // destructor 407 // destructor 407 G4GMocrenIO::~G4GMocrenIO() { 408 G4GMocrenIO::~G4GMocrenIO() { 408 ; 409 ; 409 } 410 } 410 411 411 // initialize 412 // initialize 412 void G4GMocrenIO::initialize() { 413 void G4GMocrenIO::initialize() { 413 414 414 kId.clear(); 415 kId.clear(); 415 kVersion = "2.0.0"; 416 kVersion = "2.0.0"; 416 kNumberOfEvents = 0; 417 kNumberOfEvents = 0; 417 kLittleEndianInput = true; 418 kLittleEndianInput = true; 418 #if BYTE_ORDER == LITTLE_ENDIAN 419 #if BYTE_ORDER == LITTLE_ENDIAN 419 kLittleEndianOutput = true; 420 kLittleEndianOutput = true; 420 #else // Big endian 421 #else // Big endian 421 kLittleEndianOutput = false; 422 kLittleEndianOutput = false; 422 #endif 423 #endif 423 kComment.clear(); 424 kComment.clear(); 424 kFileName = "dose.gdd"; 425 kFileName = "dose.gdd"; 425 kPointerToModalityData = 0; 426 kPointerToModalityData = 0; 426 kPointerToDoseDistData.clear(); 427 kPointerToDoseDistData.clear(); 427 kPointerToROIData = 0; 428 kPointerToROIData = 0; 428 kPointerToTrackData = 0; 429 kPointerToTrackData = 0; 429 // modality 430 // modality 430 for(int i = 0; i < 3; i++) kVoxelSpacing[i] 431 for(int i = 0; i < 3; i++) kVoxelSpacing[i] = 0.; 431 kModality.clear(); 432 kModality.clear(); 432 kModalityImageDensityMap.clear(); 433 kModalityImageDensityMap.clear(); 433 kModalityUnit = "g/cm3 "; // 12 Bytes 434 kModalityUnit = "g/cm3 "; // 12 Bytes 434 // dose 435 // dose 435 kDose.clear(); 436 kDose.clear(); 436 kDoseUnit = "keV "; // 12 Bytes 437 kDoseUnit = "keV "; // 12 Bytes 437 // ROI 438 // ROI 438 kRoi.clear(); 439 kRoi.clear(); 439 // track 440 // track 440 std::vector<float *>::iterator itr; 441 std::vector<float *>::iterator itr; 441 for(itr = kSteps.begin(); itr != kSteps.end( 442 for(itr = kSteps.begin(); itr != kSteps.end(); itr++) delete [] *itr; 442 kSteps.clear(); 443 kSteps.clear(); 443 std::vector<unsigned char *>::iterator citr; 444 std::vector<unsigned char *>::iterator citr; 444 for(citr = kStepColors.begin(); citr != kSte 445 for(citr = kStepColors.begin(); citr != kStepColors.end(); citr++) 445 delete [] *citr; 446 delete [] *citr; 446 kStepColors.clear(); 447 kStepColors.clear(); 447 kTracksWillBeStored = true; 448 kTracksWillBeStored = true; 448 449 449 // verbose 450 // verbose 450 kVerbose = 0; 451 kVerbose = 0; 451 } 452 } 452 453 453 bool G4GMocrenIO::storeData() { 454 bool G4GMocrenIO::storeData() { 454 return storeData4(); 455 return storeData4(); 455 } 456 } 456 // 457 // 457 bool G4GMocrenIO::storeData(char * _filename) 458 bool G4GMocrenIO::storeData(char * _filename) { 458 return storeData4(_filename); 459 return storeData4(_filename); 459 } 460 } 460 461 461 bool G4GMocrenIO::storeData4() { 462 bool G4GMocrenIO::storeData4() { 462 463 463 bool DEBUG = false;// 464 bool DEBUG = false;// 464 465 465 if(DEBUG || kVerbose > 0) 466 if(DEBUG || kVerbose > 0) 466 G4cout << ">>>>>>> store data (ver.4) <<< 467 G4cout << ">>>>>>> store data (ver.4) <<<<<<<" << G4endl; 467 if(DEBUG || kVerbose > 0) 468 if(DEBUG || kVerbose > 0) 468 G4cout << " " << kFileName << G4en 469 G4cout << " " << kFileName << G4endl; 469 470 470 // output file open 471 // output file open 471 std::ofstream ofile(kFileName.c_str(), 472 std::ofstream ofile(kFileName.c_str(), 472 std::ios_base::out|std::ios_base::bi 473 std::ios_base::out|std::ios_base::binary); 473 if(DEBUG || kVerbose > 0) 474 if(DEBUG || kVerbose > 0) 474 G4cout << " file open status: " << << 475 G4cout << " file open status: " << ofile << G4endl; 475 476 476 // file identifier 477 // file identifier 477 ofile.write("gMocren ", 8); 478 ofile.write("gMocren ", 8); 478 479 479 // file version 480 // file version 480 unsigned char ver = 0x04; 481 unsigned char ver = 0x04; 481 ofile.write((char *)&ver, 1); 482 ofile.write((char *)&ver, 1); 482 483 483 // endian 484 // endian 484 //ofile.write((char *)&kLittleEndianOutput, 485 //ofile.write((char *)&kLittleEndianOutput, sizeof(char)); 485 char littleEndian = 0x01; 486 char littleEndian = 0x01; 486 ofile.write((char *)&littleEndian, sizeof(ch 487 ofile.write((char *)&littleEndian, sizeof(char)); 487 if(DEBUG || kVerbose > 0) { 488 if(DEBUG || kVerbose > 0) { 488 //G4cout << "Endian: " << (int)kLittleEndi 489 //G4cout << "Endian: " << (int)kLittleEndianOutput << G4endl; 489 G4cout << "Endian: " << (int)littleEndian 490 G4cout << "Endian: " << (int)littleEndian << G4endl; 490 } 491 } 491 492 492 // for inverting the byte order 493 // for inverting the byte order 493 float ftmp[6]; 494 float ftmp[6]; 494 int itmp[6]; 495 int itmp[6]; 495 short stmp[6]; 496 short stmp[6]; 496 497 497 // comment length (fixed size) 498 // comment length (fixed size) 498 int commentLength = 1024; 499 int commentLength = 1024; 499 if(kLittleEndianOutput) { 500 if(kLittleEndianOutput) { 500 ofile.write((char *)&commentLength, 4); 501 ofile.write((char *)&commentLength, 4); 501 } else { 502 } else { 502 invertByteOrder((char *)&commentLength, it 503 invertByteOrder((char *)&commentLength, itmp[0]); 503 ofile.write((char *)itmp, 4); 504 ofile.write((char *)itmp, 4); 504 } 505 } 505 506 506 // comment 507 // comment 507 char cmt[1025]; 508 char cmt[1025]; 508 std::strncpy(cmt, kComment.c_str(), 1024); << 509 for(int i = 0; i < 1025; i++) cmt[i] = '\0'; 509 cmt[1024] = '\0'; << 510 //std::strncpy(cmt, kComment.c_str(), 1024); 510 ofile.write(cmt, 1024); << 511 std::strcpy(cmt, kComment.c_str()); >> 512 ofile.write((char *)cmt, 1024); 511 if(DEBUG || kVerbose > 0) { 513 if(DEBUG || kVerbose > 0) { 512 G4cout << "Data comment : " 514 G4cout << "Data comment : " 513 << kComment << G4endl; 515 << kComment << G4endl; 514 } 516 } 515 517 516 // voxel spacings for all images 518 // voxel spacings for all images 517 if(kLittleEndianOutput) { 519 if(kLittleEndianOutput) { 518 ofile.write((char *)kVoxelSpacing, 12); 520 ofile.write((char *)kVoxelSpacing, 12); 519 } else { 521 } else { 520 for(int j = 0; j < 3; j++) 522 for(int j = 0; j < 3; j++) 521 invertByteOrder((char *)&kVoxelSpacing[j 523 invertByteOrder((char *)&kVoxelSpacing[j], ftmp[j]); 522 ofile.write((char *)ftmp, 12); 524 ofile.write((char *)ftmp, 12); 523 } 525 } 524 if(DEBUG || kVerbose > 0) { 526 if(DEBUG || kVerbose > 0) { 525 G4cout << "Voxel spacing : (" 527 G4cout << "Voxel spacing : (" 526 << kVoxelSpacing[0] << ", " 528 << kVoxelSpacing[0] << ", " 527 << kVoxelSpacing[1] << ", " 529 << kVoxelSpacing[1] << ", " 528 << kVoxelSpacing[2] 530 << kVoxelSpacing[2] 529 << ") mm " << G4endl; 531 << ") mm " << G4endl; 530 } 532 } 531 533 532 calcPointers4(); 534 calcPointers4(); 533 if(!kTracksWillBeStored) kPointerToTrackData 535 if(!kTracksWillBeStored) kPointerToTrackData = 0; 534 536 535 // offset from file starting point to the mo 537 // offset from file starting point to the modality image data 536 if(kLittleEndianOutput) { 538 if(kLittleEndianOutput) { 537 ofile.write((char *)&kPointerToModalityDat 539 ofile.write((char *)&kPointerToModalityData, 4); 538 } else { 540 } else { 539 invertByteOrder((char *)&kPointerToModalit 541 invertByteOrder((char *)&kPointerToModalityData, itmp[0]); 540 ofile.write((char *)itmp, 4); 542 ofile.write((char *)itmp, 4); 541 } 543 } 542 544 543 // # of dose distributions 545 // # of dose distributions 544 //int nDoseDist = (int)pointerToDoseDistData 546 //int nDoseDist = (int)pointerToDoseDistData.size(); 545 int nDoseDist = getNumDoseDist(); 547 int nDoseDist = getNumDoseDist(); 546 if(kLittleEndianOutput) { 548 if(kLittleEndianOutput) { 547 ofile.write((char *)&nDoseDist, 4); 549 ofile.write((char *)&nDoseDist, 4); 548 } else { 550 } else { 549 invertByteOrder((char *)&nDoseDist, itmp[0 551 invertByteOrder((char *)&nDoseDist, itmp[0]); 550 ofile.write((char *)itmp, 4); 552 ofile.write((char *)itmp, 4); 551 } 553 } 552 554 553 // offset from file starting point to the do 555 // offset from file starting point to the dose image data 554 if(kLittleEndianOutput) { 556 if(kLittleEndianOutput) { 555 for(int i = 0; i < nDoseDist; i++) { 557 for(int i = 0; i < nDoseDist; i++) { 556 ofile.write((char *)&kPointerToDoseDistD 558 ofile.write((char *)&kPointerToDoseDistData[i], 4); 557 } 559 } 558 } else { 560 } else { 559 for(int i = 0; i < nDoseDist; i++) { 561 for(int i = 0; i < nDoseDist; i++) { 560 invertByteOrder((char *)&kPointerToDoseD 562 invertByteOrder((char *)&kPointerToDoseDistData[i], itmp[0]); 561 ofile.write((char *)itmp, 4); 563 ofile.write((char *)itmp, 4); 562 } 564 } 563 } 565 } 564 566 565 // offset from file starting point to the RO 567 // offset from file starting point to the ROI image data 566 if(kLittleEndianOutput) { 568 if(kLittleEndianOutput) { 567 ofile.write((char *)&kPointerToROIData, 4) 569 ofile.write((char *)&kPointerToROIData, 4); 568 } else { 570 } else { 569 invertByteOrder((char *)&kPointerToROIData 571 invertByteOrder((char *)&kPointerToROIData, itmp[0]); 570 ofile.write((char *)itmp, 4); 572 ofile.write((char *)itmp, 4); 571 } 573 } 572 574 573 // offset from file starting point to the tr 575 // offset from file starting point to the track data 574 if(kLittleEndianOutput) { 576 if(kLittleEndianOutput) { 575 ofile.write((char *)&kPointerToTrackData, 577 ofile.write((char *)&kPointerToTrackData, 4); 576 } else { 578 } else { 577 invertByteOrder((char *)&kPointerToTrackDa 579 invertByteOrder((char *)&kPointerToTrackData, itmp[0]); 578 ofile.write((char *)itmp, 4); 580 ofile.write((char *)itmp, 4); 579 } 581 } 580 582 581 // offset from file starting point to the de 583 // offset from file starting point to the detector data 582 if(kLittleEndianOutput) { 584 if(kLittleEndianOutput) { 583 ofile.write((char *)&kPointerToDetectorDat 585 ofile.write((char *)&kPointerToDetectorData, 4); 584 } else { 586 } else { 585 invertByteOrder((char *)&kPointerToDetecto 587 invertByteOrder((char *)&kPointerToDetectorData, itmp[0]); 586 ofile.write((char *)itmp, 4); 588 ofile.write((char *)itmp, 4); 587 } 589 } 588 590 589 if(DEBUG || kVerbose > 0) { 591 if(DEBUG || kVerbose > 0) { 590 G4cout << "Each pointer to data : " 592 G4cout << "Each pointer to data : " 591 << kPointerToModalityData << ", "; 593 << kPointerToModalityData << ", "; 592 for(int i = 0; i < nDoseDist; i++) { 594 for(int i = 0; i < nDoseDist; i++) { 593 G4cout << kPointerToDoseDistData[i] << " 595 G4cout << kPointerToDoseDistData[i] << ", "; 594 } 596 } 595 G4cout << kPointerToROIData << ", " 597 G4cout << kPointerToROIData << ", " 596 << kPointerToTrackData << ", " 598 << kPointerToTrackData << ", " 597 << kPointerToDetectorData 599 << kPointerToDetectorData 598 << G4endl; 600 << G4endl; 599 } 601 } 600 602 601 //----- modality image -----// 603 //----- modality image -----// 602 604 603 int size[3]; 605 int size[3]; 604 float scale; 606 float scale; 605 short minmax[2]; 607 short minmax[2]; 606 float fCenter[3]; 608 float fCenter[3]; 607 int iCenter[3]; 609 int iCenter[3]; 608 // modality image size 610 // modality image size 609 kModality.getSize(size); 611 kModality.getSize(size); 610 612 611 if(kLittleEndianOutput) { 613 if(kLittleEndianOutput) { 612 ofile.write((char *)size, 3*sizeof(int)); 614 ofile.write((char *)size, 3*sizeof(int)); 613 } else { 615 } else { 614 for(int j = 0; j < 3; j++) 616 for(int j = 0; j < 3; j++) 615 invertByteOrder((char *)&size[j], itmp[j 617 invertByteOrder((char *)&size[j], itmp[j]); 616 ofile.write((char *)itmp, 12); 618 ofile.write((char *)itmp, 12); 617 } 619 } 618 620 619 if(DEBUG || kVerbose > 0) { 621 if(DEBUG || kVerbose > 0) { 620 G4cout << "Modality image size : (" 622 G4cout << "Modality image size : (" 621 << size[0] << ", " 623 << size[0] << ", " 622 << size[1] << ", " 624 << size[1] << ", " 623 << size[2] << ")" 625 << size[2] << ")" 624 << G4endl; 626 << G4endl; 625 } 627 } 626 628 627 // modality image max. & min. 629 // modality image max. & min. 628 kModality.getMinMax(minmax); 630 kModality.getMinMax(minmax); 629 if(kLittleEndianOutput) { 631 if(kLittleEndianOutput) { 630 ofile.write((char *)minmax, 4); 632 ofile.write((char *)minmax, 4); 631 } else { 633 } else { 632 for(int j = 0; j < 2; j++) 634 for(int j = 0; j < 2; j++) 633 invertByteOrder((char *)&minmax[j], stmp 635 invertByteOrder((char *)&minmax[j], stmp[j]); 634 ofile.write((char *)stmp, 4); 636 ofile.write((char *)stmp, 4); 635 } 637 } 636 638 637 // modality image unit 639 // modality image unit 638 char munit[13] = "g/cm3\0"; 640 char munit[13] = "g/cm3\0"; 639 ofile.write((char *)munit, 12); 641 ofile.write((char *)munit, 12); 640 642 641 // modality image scale 643 // modality image scale 642 scale = (float)kModality.getScale(); 644 scale = (float)kModality.getScale(); 643 if(kLittleEndianOutput) { 645 if(kLittleEndianOutput) { 644 ofile.write((char *)&scale, 4); 646 ofile.write((char *)&scale, 4); 645 } else { 647 } else { 646 invertByteOrder((char *)&scale, ftmp[0]); 648 invertByteOrder((char *)&scale, ftmp[0]); 647 ofile.write((char *)ftmp, 4); 649 ofile.write((char *)ftmp, 4); 648 } 650 } 649 if(DEBUG || kVerbose > 0) { 651 if(DEBUG || kVerbose > 0) { 650 G4cout << "Modality image min., max., scal 652 G4cout << "Modality image min., max., scale : " 651 << minmax[0] << ", " 653 << minmax[0] << ", " 652 << minmax[1] << ", " 654 << minmax[1] << ", " 653 << scale << G4endl; 655 << scale << G4endl; 654 } 656 } 655 657 656 // modality image 658 // modality image 657 int psize = size[0]*size[1]; 659 int psize = size[0]*size[1]; 658 if(DEBUG || kVerbose > 0) G4cout << "Modalit 660 if(DEBUG || kVerbose > 0) G4cout << "Modality image : "; 659 for(int i = 0; i < size[2]; i++) { 661 for(int i = 0; i < size[2]; i++) { 660 short * image = kModality.getImage(i); 662 short * image = kModality.getImage(i); 661 if(kLittleEndianOutput) { 663 if(kLittleEndianOutput) { 662 ofile.write((char *)image, psize*sizeof( 664 ofile.write((char *)image, psize*sizeof(short)); 663 } else { 665 } else { 664 for(int j = 0; j < psize; j++) { 666 for(int j = 0; j < psize; j++) { 665 invertByteOrder((char *)&image[j], stmp[0]); 667 invertByteOrder((char *)&image[j], stmp[0]); 666 ofile.write((char *)stmp, 2); 668 ofile.write((char *)stmp, 2); 667 } 669 } 668 } 670 } 669 671 670 if(DEBUG || kVerbose > 0) G4cout << "[" << 672 if(DEBUG || kVerbose > 0) G4cout << "[" << i << "]" << image[(size_t)(psize*0.55)] << ", "; 671 } 673 } 672 if(DEBUG || kVerbose > 0) G4cout << G4endl; 674 if(DEBUG || kVerbose > 0) G4cout << G4endl; 673 675 674 // modality desity map for CT value 676 // modality desity map for CT value 675 size_t msize = minmax[1] - minmax[0]+1; 677 size_t msize = minmax[1] - minmax[0]+1; 676 if(DEBUG || kVerbose > 0) 678 if(DEBUG || kVerbose > 0) 677 G4cout << "modality image : " << minmax[0] 679 G4cout << "modality image : " << minmax[0] << ", " << minmax[1] << G4endl; 678 float * pdmap = new float[msize]; 680 float * pdmap = new float[msize]; 679 for(int i = 0; i < (int)msize; i++) pdmap[i] 681 for(int i = 0; i < (int)msize; i++) pdmap[i] =kModalityImageDensityMap[i]; 680 682 681 if(kLittleEndianOutput) { 683 if(kLittleEndianOutput) { 682 ofile.write((char *)pdmap, msize*sizeof(fl 684 ofile.write((char *)pdmap, msize*sizeof(float)); 683 } else { 685 } else { 684 for(int j = 0; j < (int)msize; j++) { 686 for(int j = 0; j < (int)msize; j++) { 685 invertByteOrder((char *)&pdmap[j], ftmp[ 687 invertByteOrder((char *)&pdmap[j], ftmp[0]); 686 ofile.write((char *)ftmp, 4); 688 ofile.write((char *)ftmp, 4); 687 } 689 } 688 } 690 } 689 691 690 if(DEBUG || kVerbose > 0) { 692 if(DEBUG || kVerbose > 0) { 691 G4cout << "density map : " << std::ends; 693 G4cout << "density map : " << std::ends; 692 for(int i = 0; i < (int)msize; i+=50) 694 for(int i = 0; i < (int)msize; i+=50) 693 G4cout <<kModalityImageDensityMap[i] << 695 G4cout <<kModalityImageDensityMap[i] << ", "; 694 G4cout << G4endl; 696 G4cout << G4endl; 695 } 697 } 696 delete [] pdmap; 698 delete [] pdmap; 697 699 698 700 699 //----- dose distribution image -----// 701 //----- dose distribution image -----// 700 702 701 if(!isDoseEmpty()) { 703 if(!isDoseEmpty()) { 702 704 703 calcDoseDistScale(); 705 calcDoseDistScale(); 704 706 705 for(int ndose = 0; ndose < nDoseDist; ndos 707 for(int ndose = 0; ndose < nDoseDist; ndose++) { 706 // dose distrbution image size 708 // dose distrbution image size 707 kDose[ndose].getSize(size); 709 kDose[ndose].getSize(size); 708 if(kLittleEndianOutput) { 710 if(kLittleEndianOutput) { 709 ofile.write((char *)size, 3*sizeof(int)); 711 ofile.write((char *)size, 3*sizeof(int)); 710 } else { 712 } else { 711 for(int j = 0; j < 3; j++) 713 for(int j = 0; j < 3; j++) 712 invertByteOrder((char *)&size[j], itmp[j]) 714 invertByteOrder((char *)&size[j], itmp[j]); 713 ofile.write((char *)itmp, 12); 715 ofile.write((char *)itmp, 12); 714 } 716 } 715 if(DEBUG || kVerbose > 0) { 717 if(DEBUG || kVerbose > 0) { 716 G4cout << "Dose dist. [" << ndose << "] imag 718 G4cout << "Dose dist. [" << ndose << "] image size : (" 717 << size[0] << ", " 719 << size[0] << ", " 718 << size[1] << ", " 720 << size[1] << ", " 719 << size[2] << ")" 721 << size[2] << ")" 720 << G4endl; 722 << G4endl; 721 } 723 } 722 724 723 // dose distribution max. & min. 725 // dose distribution max. & min. 724 getShortDoseDistMinMax(minmax, ndose); 726 getShortDoseDistMinMax(minmax, ndose); 725 if(kLittleEndianOutput) { 727 if(kLittleEndianOutput) { 726 ofile.write((char *)minmax, 2*2); // sizeof( 728 ofile.write((char *)minmax, 2*2); // sizeof(shorft)*2 727 } else { 729 } else { 728 for(int j = 0; j < 2; j++) 730 for(int j = 0; j < 2; j++) 729 invertByteOrder((char *)&minmax[j], stmp[j 731 invertByteOrder((char *)&minmax[j], stmp[j]); 730 ofile.write((char *)stmp, 4); 732 ofile.write((char *)stmp, 4); 731 } 733 } 732 734 733 // dose distribution unit 735 // dose distribution unit 734 char cdunit[13]; 736 char cdunit[13]; 735 std::strncpy(cdunit, kDoseUnit.c_str(), << 737 for(int i = 0; i < 13; i++) cdunit[i] = '\0'; 736 cdunit[12] = '\0'; << 738 std::strcpy(cdunit, kDoseUnit.c_str()); 737 ofile.write(cdunit, 12); << 739 ofile.write((char *)cdunit, 12); 738 if(DEBUG || kVerbose > 0) { 740 if(DEBUG || kVerbose > 0) { 739 G4cout << "Dose dist. unit : " << kDoseUnit 741 G4cout << "Dose dist. unit : " << kDoseUnit << G4endl; 740 } 742 } 741 743 742 // dose distribution scaling 744 // dose distribution scaling 743 double dscale; 745 double dscale; 744 dscale = getDoseDistScale(ndose); 746 dscale = getDoseDistScale(ndose); 745 scale = float(dscale); 747 scale = float(dscale); 746 if(kLittleEndianOutput) { 748 if(kLittleEndianOutput) { 747 ofile.write((char *)&scale, 4); 749 ofile.write((char *)&scale, 4); 748 } else { 750 } else { 749 invertByteOrder((char *)&scale, ftmp[0]); 751 invertByteOrder((char *)&scale, ftmp[0]); 750 ofile.write((char *)ftmp, 4); 752 ofile.write((char *)ftmp, 4); 751 } 753 } 752 if(DEBUG || kVerbose > 0) { 754 if(DEBUG || kVerbose > 0) { 753 G4cout << "Dose dist. [" << ndose 755 G4cout << "Dose dist. [" << ndose 754 << "] image min., max., scale : " 756 << "] image min., max., scale : " 755 << minmax[0] << ", " 757 << minmax[0] << ", " 756 << minmax[1] << ", " 758 << minmax[1] << ", " 757 << scale << G4endl; 759 << scale << G4endl; 758 } 760 } 759 761 760 // dose distribution image 762 // dose distribution image 761 int dsize = size[0]*size[1]; 763 int dsize = size[0]*size[1]; 762 short * dimage = new short[dsize]; 764 short * dimage = new short[dsize]; 763 for(int z = 0; z < size[2]; z++) { 765 for(int z = 0; z < size[2]; z++) { 764 getShortDoseDist(dimage, z, ndose); 766 getShortDoseDist(dimage, z, ndose); 765 if(kLittleEndianOutput) { 767 if(kLittleEndianOutput) { 766 ofile.write((char *)dimage, dsize*2); //si 768 ofile.write((char *)dimage, dsize*2); //sizeof(short) 767 } else { 769 } else { 768 for(int j = 0; j < dsize; j++) { 770 for(int j = 0; j < dsize; j++) { 769 invertByteOrder((char *)&dimage[j], stmp 771 invertByteOrder((char *)&dimage[j], stmp[0]); 770 ofile.write((char *)stmp, 2); 772 ofile.write((char *)stmp, 2); 771 } 773 } 772 } 774 } 773 775 774 if(DEBUG || kVerbose > 0) { 776 if(DEBUG || kVerbose > 0) { 775 for(int j = 0; j < dsize; j++) { 777 for(int j = 0; j < dsize; j++) { 776 if(dimage[j] < 0) 778 if(dimage[j] < 0) 777 G4cout << "[" << j << "," << z << "]" 779 G4cout << "[" << j << "," << z << "]" 778 << dimage[j] << ", "; 780 << dimage[j] << ", "; 779 } 781 } 780 } 782 } 781 } 783 } 782 if(DEBUG || kVerbose > 0) G4cout << G4en 784 if(DEBUG || kVerbose > 0) G4cout << G4endl; 783 delete [] dimage; 785 delete [] dimage; 784 786 785 // relative location of the dose distrib 787 // relative location of the dose distribution image for 786 // the modality image 788 // the modality image 787 getDoseDistCenterPosition(fCenter, ndose 789 getDoseDistCenterPosition(fCenter, ndose); 788 for(int i = 0; i < 3; i++) iCenter[i] = 790 for(int i = 0; i < 3; i++) iCenter[i] = (int)fCenter[i]; 789 if(kLittleEndianOutput) { 791 if(kLittleEndianOutput) { 790 ofile.write((char *)iCenter, 3*4); // 3*size 792 ofile.write((char *)iCenter, 3*4); // 3*sizeof(int) 791 } else { 793 } else { 792 for(int j = 0; j < 3; j++) 794 for(int j = 0; j < 3; j++) 793 invertByteOrder((char *)&iCenter[j], itmp[ 795 invertByteOrder((char *)&iCenter[j], itmp[j]); 794 ofile.write((char *)itmp, 12); 796 ofile.write((char *)itmp, 12); 795 } 797 } 796 if(DEBUG || kVerbose > 0) { 798 if(DEBUG || kVerbose > 0) { 797 G4cout << "Dose dist. [" << ndose 799 G4cout << "Dose dist. [" << ndose 798 << "]image relative location : (" 800 << "]image relative location : (" 799 << iCenter[0] << ", " 801 << iCenter[0] << ", " 800 << iCenter[1] << ", " 802 << iCenter[1] << ", " 801 << iCenter[2] << ")" << G4endl; 803 << iCenter[2] << ")" << G4endl; 802 } 804 } 803 805 804 // dose distribution name 806 // dose distribution name 805 std::string name = getDoseDistName(ndose 807 std::string name = getDoseDistName(ndose); 806 if(name.size() == 0) name = "dose"; 808 if(name.size() == 0) name = "dose"; 807 name.resize(80); 809 name.resize(80); 808 ofile.write((char *)name.c_str(), 80); 810 ofile.write((char *)name.c_str(), 80); 809 if(DEBUG || kVerbose > 0) { 811 if(DEBUG || kVerbose > 0) { 810 G4cout << "Dose dist. name : " << name << G4 812 G4cout << "Dose dist. name : " << name << G4endl; 811 } 813 } 812 814 813 } 815 } 814 } 816 } 815 817 816 //----- ROI image -----// 818 //----- ROI image -----// 817 if(!isROIEmpty()) { 819 if(!isROIEmpty()) { 818 // ROI image size 820 // ROI image size 819 kRoi[0].getSize(size); 821 kRoi[0].getSize(size); 820 if(kLittleEndianOutput) { 822 if(kLittleEndianOutput) { 821 ofile.write((char *)size, 3*sizeof(int)) 823 ofile.write((char *)size, 3*sizeof(int)); 822 } else { 824 } else { 823 for(int j = 0; j < 3; j++) 825 for(int j = 0; j < 3; j++) 824 invertByteOrder((char *)&size[j], itmp[j]); 826 invertByteOrder((char *)&size[j], itmp[j]); 825 ofile.write((char *)itmp, 12); 827 ofile.write((char *)itmp, 12); 826 } 828 } 827 if(DEBUG || kVerbose > 0) { 829 if(DEBUG || kVerbose > 0) { 828 G4cout << "ROI image size : (" 830 G4cout << "ROI image size : (" 829 << size[0] << ", " 831 << size[0] << ", " 830 << size[1] << ", " 832 << size[1] << ", " 831 << size[2] << ")" 833 << size[2] << ")" 832 << G4endl; 834 << G4endl; 833 } 835 } 834 836 835 // ROI max. & min. 837 // ROI max. & min. 836 kRoi[0].getMinMax(minmax); 838 kRoi[0].getMinMax(minmax); 837 if(kLittleEndianOutput) { 839 if(kLittleEndianOutput) { 838 ofile.write((char *)minmax, sizeof(short 840 ofile.write((char *)minmax, sizeof(short)*2); 839 } else { 841 } else { 840 for(int j = 0; j < 2; j++) 842 for(int j = 0; j < 2; j++) 841 invertByteOrder((char *)&minmax[j], stmp[j]) 843 invertByteOrder((char *)&minmax[j], stmp[j]); 842 ofile.write((char *)stmp, 4); 844 ofile.write((char *)stmp, 4); 843 } 845 } 844 846 845 // ROI distribution scaling 847 // ROI distribution scaling 846 scale = (float)kRoi[0].getScale(); 848 scale = (float)kRoi[0].getScale(); 847 if(kLittleEndianOutput) { 849 if(kLittleEndianOutput) { 848 ofile.write((char *)&scale, sizeof(float 850 ofile.write((char *)&scale, sizeof(float)); 849 } else { 851 } else { 850 invertByteOrder((char *)&scale, ftmp[0]) 852 invertByteOrder((char *)&scale, ftmp[0]); 851 ofile.write((char *)ftmp, 4); 853 ofile.write((char *)ftmp, 4); 852 } 854 } 853 if(DEBUG || kVerbose > 0) { 855 if(DEBUG || kVerbose > 0) { 854 G4cout << "ROI image min., max., scale : 856 G4cout << "ROI image min., max., scale : " 855 << minmax[0] << ", " 857 << minmax[0] << ", " 856 << minmax[1] << ", " 858 << minmax[1] << ", " 857 << scale << G4endl; 859 << scale << G4endl; 858 } 860 } 859 861 860 // ROI image 862 // ROI image 861 int rsize = size[0]*size[1]; 863 int rsize = size[0]*size[1]; 862 for(int i = 0; i < size[2]; i++) { 864 for(int i = 0; i < size[2]; i++) { 863 short * rimage = kRoi[0].getImage(i); 865 short * rimage = kRoi[0].getImage(i); 864 if(kLittleEndianOutput) { 866 if(kLittleEndianOutput) { 865 ofile.write((char *)rimage, rsize*sizeof(sho 867 ofile.write((char *)rimage, rsize*sizeof(short)); 866 } else { 868 } else { 867 for(int j = 0; j < rsize; j++) { 869 for(int j = 0; j < rsize; j++) { 868 invertByteOrder((char *)&rimage[j], stmp[0 870 invertByteOrder((char *)&rimage[j], stmp[0]); 869 ofile.write((char *)stmp, 2); 871 ofile.write((char *)stmp, 2); 870 } 872 } 871 } 873 } 872 874 873 } 875 } 874 876 875 // ROI relative location 877 // ROI relative location 876 kRoi[0].getCenterPosition(fCenter); 878 kRoi[0].getCenterPosition(fCenter); 877 for(int i = 0; i < 3; i++) iCenter[i] = (i 879 for(int i = 0; i < 3; i++) iCenter[i] = (int)fCenter[i]; 878 if(kLittleEndianOutput) { 880 if(kLittleEndianOutput) { 879 ofile.write((char *)iCenter, 3*sizeof(in 881 ofile.write((char *)iCenter, 3*sizeof(int)); 880 } else { 882 } else { 881 for(int j = 0; j < 3; j++) 883 for(int j = 0; j < 3; j++) 882 invertByteOrder((char *)&iCenter[j], itmp[j] 884 invertByteOrder((char *)&iCenter[j], itmp[j]); 883 ofile.write((char *)itmp, 12); 885 ofile.write((char *)itmp, 12); 884 } 886 } 885 if(DEBUG || kVerbose > 0) { 887 if(DEBUG || kVerbose > 0) { 886 G4cout << "ROI image relative location : 888 G4cout << "ROI image relative location : (" 887 << iCenter[0] << ", " 889 << iCenter[0] << ", " 888 << iCenter[1] << ", " 890 << iCenter[1] << ", " 889 << iCenter[2] << ")" << G4endl; 891 << iCenter[2] << ")" << G4endl; 890 } 892 } 891 } 893 } 892 894 893 //----- track information -----// 895 //----- track information -----// 894 // number of track 896 // number of track 895 if(kPointerToTrackData > 0) { 897 if(kPointerToTrackData > 0) { 896 898 897 int ntrk = (int)kTracks.size(); << 899 int ntrk = kTracks.size(); 898 if(kLittleEndianOutput) { 900 if(kLittleEndianOutput) { 899 ofile.write((char *)&ntrk, sizeof(int)); 901 ofile.write((char *)&ntrk, sizeof(int)); 900 } else { 902 } else { 901 invertByteOrder((char *)&ntrk, itmp[0]); 903 invertByteOrder((char *)&ntrk, itmp[0]); 902 ofile.write((char *)itmp, 4); 904 ofile.write((char *)itmp, 4); 903 } 905 } 904 if(DEBUG || kVerbose > 0) { 906 if(DEBUG || kVerbose > 0) { 905 G4cout << "# of tracks : " 907 G4cout << "# of tracks : " 906 << ntrk << G4endl; 908 << ntrk << G4endl; 907 } 909 } 908 910 909 for(int nt = 0; nt < ntrk; nt++) { 911 for(int nt = 0; nt < ntrk; nt++) { 910 912 911 // # of steps in a track 913 // # of steps in a track 912 int nsteps = kTracks[nt].getNumberOfStep 914 int nsteps = kTracks[nt].getNumberOfSteps(); 913 if(kLittleEndianOutput) { 915 if(kLittleEndianOutput) { 914 ofile.write((char *)&nsteps, sizeof(int)); 916 ofile.write((char *)&nsteps, sizeof(int)); 915 } else { 917 } else { 916 invertByteOrder((char *)&nsteps, itmp[0]); 918 invertByteOrder((char *)&nsteps, itmp[0]); 917 ofile.write((char *)itmp, 4); 919 ofile.write((char *)itmp, 4); 918 } 920 } 919 if(DEBUG || kVerbose > 0) { 921 if(DEBUG || kVerbose > 0) { 920 G4cout << "# of steps : " << nsteps << G4end 922 G4cout << "# of steps : " << nsteps << G4endl; 921 } 923 } 922 924 923 // track color 925 // track color 924 unsigned char tcolor[3]; 926 unsigned char tcolor[3]; 925 kTracks[nt].getColor(tcolor); 927 kTracks[nt].getColor(tcolor); 926 ofile.write((char *)tcolor, 3); 928 ofile.write((char *)tcolor, 3); 927 929 928 // steps 930 // steps 929 float stepPoints[6]; 931 float stepPoints[6]; 930 for(int isteps = 0; isteps < nsteps; ist << 932 for(int ns = 0; ns < nsteps; ns++) { 931 kTracks[nt].getStep(stepPoints[0], stepPoint 933 kTracks[nt].getStep(stepPoints[0], stepPoints[1], stepPoints[2], 932 stepPoints[3], stepPoints[4], stepPo 934 stepPoints[3], stepPoints[4], stepPoints[5], 933 isteps); << 935 ns); 934 936 935 if(kLittleEndianOutput) { 937 if(kLittleEndianOutput) { 936 ofile.write((char *)stepPoints, sizeof(flo 938 ofile.write((char *)stepPoints, sizeof(float)*6); 937 } else { 939 } else { 938 for(int j = 0; j < 6; j++) 940 for(int j = 0; j < 6; j++) 939 invertByteOrder((char *)&stepPoints[j], 941 invertByteOrder((char *)&stepPoints[j], ftmp[j]); 940 ofile.write((char *)ftmp, 24); 942 ofile.write((char *)ftmp, 24); 941 } 943 } 942 } 944 } 943 } 945 } 944 } 946 } 945 947 946 //----- detector information -----// 948 //----- detector information -----// 947 // number of detectors 949 // number of detectors 948 if(kPointerToDetectorData > 0) { 950 if(kPointerToDetectorData > 0) { 949 int ndet = (int)kDetectors.size(); << 951 int ndet = kDetectors.size(); 950 if(kLittleEndianOutput) { 952 if(kLittleEndianOutput) { 951 ofile.write((char *)&ndet, sizeof(int)); 953 ofile.write((char *)&ndet, sizeof(int)); 952 } else { 954 } else { 953 invertByteOrder((char *)&ndet, itmp[0]); 955 invertByteOrder((char *)&ndet, itmp[0]); 954 ofile.write((char *)itmp, 4); 956 ofile.write((char *)itmp, 4); 955 } 957 } 956 if(DEBUG || kVerbose > 0) { 958 if(DEBUG || kVerbose > 0) { 957 G4cout << "# of detectors : " 959 G4cout << "# of detectors : " 958 << ndet << G4endl; 960 << ndet << G4endl; 959 } 961 } 960 962 961 for(int nd = 0; nd < ndet; nd++) { 963 for(int nd = 0; nd < ndet; nd++) { 962 964 963 // # of edges of a detector 965 // # of edges of a detector 964 int nedges = kDetectors[nd].getNumberOfE 966 int nedges = kDetectors[nd].getNumberOfEdges(); 965 if(kLittleEndianOutput) { 967 if(kLittleEndianOutput) { 966 ofile.write((char *)&nedges, sizeof(int)); 968 ofile.write((char *)&nedges, sizeof(int)); 967 } else { 969 } else { 968 invertByteOrder((char *)&nedges, itmp[0]); 970 invertByteOrder((char *)&nedges, itmp[0]); 969 ofile.write((char *)itmp, 4); 971 ofile.write((char *)itmp, 4); 970 } 972 } 971 if(DEBUG || kVerbose > 0) { 973 if(DEBUG || kVerbose > 0) { 972 G4cout << "# of edges in a detector : " << n 974 G4cout << "# of edges in a detector : " << nedges << G4endl; 973 } 975 } 974 976 975 // edges 977 // edges 976 float edgePoints[6]; 978 float edgePoints[6]; 977 for(int ne = 0; ne < nedges; ne++) { 979 for(int ne = 0; ne < nedges; ne++) { 978 kDetectors[nd].getEdge(edgePoints[0], edgePo 980 kDetectors[nd].getEdge(edgePoints[0], edgePoints[1], edgePoints[2], 979 edgePoints[3], edgePoints[4], edg 981 edgePoints[3], edgePoints[4], edgePoints[5], 980 ne); 982 ne); 981 983 982 if(kLittleEndianOutput) { 984 if(kLittleEndianOutput) { 983 ofile.write((char *)edgePoints, sizeof(flo 985 ofile.write((char *)edgePoints, sizeof(float)*6); 984 } else { 986 } else { 985 for(int j = 0; j < 6; j++) 987 for(int j = 0; j < 6; j++) 986 invertByteOrder((char *)&edgePoints[j], 988 invertByteOrder((char *)&edgePoints[j], ftmp[j]); 987 ofile.write((char *)ftmp, 24); 989 ofile.write((char *)ftmp, 24); 988 } 990 } 989 991 990 if(DEBUG || kVerbose > 0) { 992 if(DEBUG || kVerbose > 0) { 991 if(ne < 1) { 993 if(ne < 1) { 992 G4cout << " edge : (" << edgePoints[0] < 994 G4cout << " edge : (" << edgePoints[0] << ", " 993 << edgePoints[1] << ", " 995 << edgePoints[1] << ", " 994 << edgePoints[2] << ") - (" 996 << edgePoints[2] << ") - (" 995 << edgePoints[3] << ", " 997 << edgePoints[3] << ", " 996 << edgePoints[4] << ", " 998 << edgePoints[4] << ", " 997 << edgePoints[5] << ")" << G4endl; 999 << edgePoints[5] << ")" << G4endl; 998 } 1000 } 999 } 1001 } 1000 } 1002 } 1001 1003 1002 // detector color 1004 // detector color 1003 unsigned char dcolor[3]; 1005 unsigned char dcolor[3]; 1004 kDetectors[nd].getColor(dcolor); 1006 kDetectors[nd].getColor(dcolor); 1005 ofile.write((char *)dcolor, 3); 1007 ofile.write((char *)dcolor, 3); 1006 if(DEBUG || kVerbose > 0) { 1008 if(DEBUG || kVerbose > 0) { 1007 G4cout << " rgb : (" << (int)dcolor[0] << " 1009 G4cout << " rgb : (" << (int)dcolor[0] << ", " 1008 << (int)dcolor[1] << ", " 1010 << (int)dcolor[1] << ", " 1009 << (int)dcolor[2] << ")" << G4endl; 1011 << (int)dcolor[2] << ")" << G4endl; 1010 } 1012 } 1011 1013 1012 // detector name 1014 // detector name 1013 std::string dname = kDetectors[nd].getN 1015 std::string dname = kDetectors[nd].getName(); 1014 dname.resize(80); 1016 dname.resize(80); 1015 ofile.write((char *)dname.c_str(), 80); 1017 ofile.write((char *)dname.c_str(), 80); 1016 if(DEBUG || kVerbose > 0) { 1018 if(DEBUG || kVerbose > 0) { 1017 G4cout << " detector name : " << dname << G 1019 G4cout << " detector name : " << dname << G4endl; 1018 1020 1019 } 1021 } 1020 } 1022 } 1021 } 1023 } 1022 1024 1023 // file end mark 1025 // file end mark 1024 ofile.write("END", 3); 1026 ofile.write("END", 3); 1025 1027 1026 ofile.close(); 1028 ofile.close(); 1027 if(DEBUG || kVerbose > 0) 1029 if(DEBUG || kVerbose > 0) 1028 G4cout << ">>>> closed gdd file: " << kFi 1030 G4cout << ">>>> closed gdd file: " << kFileName << G4endl; 1029 1031 1030 return true; 1032 return true; 1031 } 1033 } 1032 bool G4GMocrenIO::storeData3() { 1034 bool G4GMocrenIO::storeData3() { 1033 1035 1034 if(kVerbose > 0) G4cout << ">>>>>>> store 1036 if(kVerbose > 0) G4cout << ">>>>>>> store data (ver.3) <<<<<<<" << G4endl; 1035 if(kVerbose > 0) G4cout << " " << k 1037 if(kVerbose > 0) G4cout << " " << kFileName << G4endl; 1036 1038 1037 bool DEBUG = false;// 1039 bool DEBUG = false;// 1038 1040 1039 // output file open 1041 // output file open 1040 std::ofstream ofile(kFileName.c_str(), 1042 std::ofstream ofile(kFileName.c_str(), 1041 std::ios_base::out|std::ios_base::b 1043 std::ios_base::out|std::ios_base::binary); 1042 1044 1043 // file identifier 1045 // file identifier 1044 ofile.write("gMocren ", 8); 1046 ofile.write("gMocren ", 8); 1045 1047 1046 // file version 1048 // file version 1047 unsigned char ver = 0x03; 1049 unsigned char ver = 0x03; 1048 ofile.write((char *)&ver, 1); 1050 ofile.write((char *)&ver, 1); 1049 1051 1050 // endian 1052 // endian 1051 ofile.write((char *)&kLittleEndianOutput, s 1053 ofile.write((char *)&kLittleEndianOutput, sizeof(char)); 1052 1054 1053 // comment length (fixed size) 1055 // comment length (fixed size) 1054 int commentLength = 1024; 1056 int commentLength = 1024; 1055 ofile.write((char *)&commentLength, 4); 1057 ofile.write((char *)&commentLength, 4); 1056 1058 1057 // comment 1059 // comment 1058 char cmt[1025]; 1060 char cmt[1025]; 1059 std::strncpy(cmt, kComment.c_str(), 1024); 1061 std::strncpy(cmt, kComment.c_str(), 1024); 1060 ofile.write((char *)cmt, 1024); 1062 ofile.write((char *)cmt, 1024); 1061 if(DEBUG || kVerbose > 0) { 1063 if(DEBUG || kVerbose > 0) { 1062 G4cout << "Data comment : " 1064 G4cout << "Data comment : " 1063 << kComment << G4endl; 1065 << kComment << G4endl; 1064 } 1066 } 1065 1067 1066 // voxel spacings for all images 1068 // voxel spacings for all images 1067 ofile.write((char *)kVoxelSpacing, 12); 1069 ofile.write((char *)kVoxelSpacing, 12); 1068 if(DEBUG || kVerbose > 0) { 1070 if(DEBUG || kVerbose > 0) { 1069 G4cout << "Voxel spacing : (" 1071 G4cout << "Voxel spacing : (" 1070 << kVoxelSpacing[0] << ", " 1072 << kVoxelSpacing[0] << ", " 1071 << kVoxelSpacing[1] << ", " 1073 << kVoxelSpacing[1] << ", " 1072 << kVoxelSpacing[2] 1074 << kVoxelSpacing[2] 1073 << ") mm " << G4endl; 1075 << ") mm " << G4endl; 1074 } 1076 } 1075 1077 1076 calcPointers3(); 1078 calcPointers3(); 1077 1079 1078 // offset from file starting point to the m 1080 // offset from file starting point to the modality image data 1079 ofile.write((char *)&kPointerToModalityData 1081 ofile.write((char *)&kPointerToModalityData, 4); 1080 1082 1081 // # of dose distributions 1083 // # of dose distributions 1082 //int nDoseDist = (int)pointerToDoseDistDat 1084 //int nDoseDist = (int)pointerToDoseDistData.size(); 1083 int nDoseDist = getNumDoseDist(); 1085 int nDoseDist = getNumDoseDist(); 1084 ofile.write((char *)&nDoseDist, 4); 1086 ofile.write((char *)&nDoseDist, 4); 1085 1087 1086 // offset from file starting point to the d 1088 // offset from file starting point to the dose image data 1087 for(int i = 0; i < nDoseDist; i++) { 1089 for(int i = 0; i < nDoseDist; i++) { 1088 ofile.write((char *)&kPointerToDoseDistDa 1090 ofile.write((char *)&kPointerToDoseDistData[i], 4); 1089 } 1091 } 1090 1092 1091 // offset from file starting point to the R 1093 // offset from file starting point to the ROI image data 1092 ofile.write((char *)&kPointerToROIData, 4); 1094 ofile.write((char *)&kPointerToROIData, 4); 1093 1095 1094 // offset from file starting point to the t 1096 // offset from file starting point to the track data 1095 ofile.write((char *)&kPointerToTrackData, 4 1097 ofile.write((char *)&kPointerToTrackData, 4); 1096 if(DEBUG || kVerbose > 0) { 1098 if(DEBUG || kVerbose > 0) { 1097 G4cout << "Each pointer to data : " 1099 G4cout << "Each pointer to data : " 1098 << kPointerToModalityData << ", "; 1100 << kPointerToModalityData << ", "; 1099 for(int i = 0; i < nDoseDist; i++) { 1101 for(int i = 0; i < nDoseDist; i++) { 1100 G4cout << kPointerToDoseDistData[i] << 1102 G4cout << kPointerToDoseDistData[i] << ", "; 1101 } 1103 } 1102 G4cout << kPointerToROIData << ", " 1104 G4cout << kPointerToROIData << ", " 1103 << kPointerToTrackData << G4endl; 1105 << kPointerToTrackData << G4endl; 1104 } 1106 } 1105 1107 1106 //----- modality image -----// 1108 //----- modality image -----// 1107 1109 1108 int size[3]; 1110 int size[3]; 1109 float scale; 1111 float scale; 1110 short minmax[2]; 1112 short minmax[2]; 1111 float fCenter[3]; 1113 float fCenter[3]; 1112 int iCenter[3]; 1114 int iCenter[3]; 1113 // modality image size 1115 // modality image size 1114 kModality.getSize(size); 1116 kModality.getSize(size); 1115 ofile.write((char *)size, 3*sizeof(int)); 1117 ofile.write((char *)size, 3*sizeof(int)); 1116 if(DEBUG || kVerbose > 0) { 1118 if(DEBUG || kVerbose > 0) { 1117 G4cout << "Modality image size : (" 1119 G4cout << "Modality image size : (" 1118 << size[0] << ", " 1120 << size[0] << ", " 1119 << size[1] << ", " 1121 << size[1] << ", " 1120 << size[2] << ")" 1122 << size[2] << ")" 1121 << G4endl; 1123 << G4endl; 1122 } 1124 } 1123 1125 1124 // modality image max. & min. 1126 // modality image max. & min. 1125 kModality.getMinMax(minmax); 1127 kModality.getMinMax(minmax); 1126 ofile.write((char *)minmax, 4); 1128 ofile.write((char *)minmax, 4); 1127 1129 1128 // modality image unit 1130 // modality image unit 1129 char munit[13] = "g/cm3 "; 1131 char munit[13] = "g/cm3 "; 1130 ofile.write((char *)munit, 12); 1132 ofile.write((char *)munit, 12); 1131 1133 1132 // modality image scale 1134 // modality image scale 1133 scale = (float)kModality.getScale(); 1135 scale = (float)kModality.getScale(); 1134 ofile.write((char *)&scale, 4); 1136 ofile.write((char *)&scale, 4); 1135 if(DEBUG || kVerbose > 0) { 1137 if(DEBUG || kVerbose > 0) { 1136 G4cout << "Modality image min., max., sca 1138 G4cout << "Modality image min., max., scale : " 1137 << minmax[0] << ", " 1139 << minmax[0] << ", " 1138 << minmax[1] << ", " 1140 << minmax[1] << ", " 1139 << scale << G4endl; 1141 << scale << G4endl; 1140 } 1142 } 1141 1143 1142 // modality image 1144 // modality image 1143 int psize = size[0]*size[1]; 1145 int psize = size[0]*size[1]; 1144 if(DEBUG || kVerbose > 0) G4cout << "Modali 1146 if(DEBUG || kVerbose > 0) G4cout << "Modality image : "; 1145 for(int i = 0; i < size[2]; i++) { 1147 for(int i = 0; i < size[2]; i++) { 1146 short * image = kModality.getImage(i); 1148 short * image = kModality.getImage(i); 1147 ofile.write((char *)image, psize*sizeof(s 1149 ofile.write((char *)image, psize*sizeof(short)); 1148 1150 1149 if(DEBUG || kVerbose > 0) G4cout << "[" < 1151 if(DEBUG || kVerbose > 0) G4cout << "[" << i << "]" << image[(size_t)(psize*0.55)] << ", "; 1150 } 1152 } 1151 if(DEBUG || kVerbose > 0) G4cout << G4endl; 1153 if(DEBUG || kVerbose > 0) G4cout << G4endl; 1152 1154 1153 // modality desity map for CT value 1155 // modality desity map for CT value 1154 size_t msize = minmax[1] - minmax[0]+1; 1156 size_t msize = minmax[1] - minmax[0]+1; 1155 float * pdmap = new float[msize]; 1157 float * pdmap = new float[msize]; 1156 for(int i = 0; i < (int)msize; i++) pdmap[i 1158 for(int i = 0; i < (int)msize; i++) pdmap[i] =kModalityImageDensityMap[i]; 1157 ofile.write((char *)pdmap, msize*sizeof(flo 1159 ofile.write((char *)pdmap, msize*sizeof(float)); 1158 if(DEBUG || kVerbose > 0) { 1160 if(DEBUG || kVerbose > 0) { 1159 G4cout << "density map : " << std::ends; 1161 G4cout << "density map : " << std::ends; 1160 for(int i = 0; i < (int)msize; i+=50) 1162 for(int i = 0; i < (int)msize; i+=50) 1161 G4cout <<kModalityImageDensityMap[i] << 1163 G4cout <<kModalityImageDensityMap[i] << ", "; 1162 G4cout << G4endl; 1164 G4cout << G4endl; 1163 } 1165 } 1164 delete [] pdmap; 1166 delete [] pdmap; 1165 1167 1166 1168 1167 //----- dose distribution image -----// 1169 //----- dose distribution image -----// 1168 1170 1169 if(!isDoseEmpty()) { 1171 if(!isDoseEmpty()) { 1170 1172 1171 calcDoseDistScale(); 1173 calcDoseDistScale(); 1172 1174 1173 for(int ndose = 0; ndose < nDoseDist; ndo 1175 for(int ndose = 0; ndose < nDoseDist; ndose++) { 1174 // dose distrbution image size 1176 // dose distrbution image size 1175 kDose[ndose].getSize(size); 1177 kDose[ndose].getSize(size); 1176 ofile.write((char *)size, 3*sizeof(int) 1178 ofile.write((char *)size, 3*sizeof(int)); 1177 if(DEBUG || kVerbose > 0) { 1179 if(DEBUG || kVerbose > 0) { 1178 G4cout << "Dose dist. [" << ndose << "] ima 1180 G4cout << "Dose dist. [" << ndose << "] image size : (" 1179 << size[0] << ", " 1181 << size[0] << ", " 1180 << size[1] << ", " 1182 << size[1] << ", " 1181 << size[2] << ")" 1183 << size[2] << ")" 1182 << G4endl; 1184 << G4endl; 1183 } 1185 } 1184 1186 1185 // dose distribution max. & min. 1187 // dose distribution max. & min. 1186 getShortDoseDistMinMax(minmax, ndose); 1188 getShortDoseDistMinMax(minmax, ndose); 1187 ofile.write((char *)minmax, 2*2); // si 1189 ofile.write((char *)minmax, 2*2); // sizeof(shorft)*2 1188 1190 1189 // dose distribution unit 1191 // dose distribution unit 1190 ofile.write((char *)kDoseUnit.c_str(), 1192 ofile.write((char *)kDoseUnit.c_str(), 12); 1191 if(DEBUG || kVerbose > 0) { 1193 if(DEBUG || kVerbose > 0) { 1192 G4cout << "Dose dist. unit : " << kDoseUnit 1194 G4cout << "Dose dist. unit : " << kDoseUnit << G4endl; 1193 } 1195 } 1194 1196 1195 // dose distribution scaling 1197 // dose distribution scaling 1196 double dscale; 1198 double dscale; 1197 dscale = getDoseDistScale(ndose); 1199 dscale = getDoseDistScale(ndose); 1198 scale = float(dscale); 1200 scale = float(dscale); 1199 ofile.write((char *)&scale, 4); 1201 ofile.write((char *)&scale, 4); 1200 if(DEBUG || kVerbose > 0) { 1202 if(DEBUG || kVerbose > 0) { 1201 G4cout << "Dose dist. [" << ndose 1203 G4cout << "Dose dist. [" << ndose 1202 << "] image min., max., scale : " 1204 << "] image min., max., scale : " 1203 << minmax[0] << ", " 1205 << minmax[0] << ", " 1204 << minmax[1] << ", " 1206 << minmax[1] << ", " 1205 << scale << G4endl; 1207 << scale << G4endl; 1206 } 1208 } 1207 1209 1208 // dose distribution image 1210 // dose distribution image 1209 int dsize = size[0]*size[1]; 1211 int dsize = size[0]*size[1]; 1210 short * dimage = new short[dsize]; 1212 short * dimage = new short[dsize]; 1211 for(int z = 0; z < size[2]; z++) { 1213 for(int z = 0; z < size[2]; z++) { 1212 getShortDoseDist(dimage, z, ndose); 1214 getShortDoseDist(dimage, z, ndose); 1213 ofile.write((char *)dimage, dsize*2); //siz 1215 ofile.write((char *)dimage, dsize*2); //sizeof(short) 1214 1216 1215 if(DEBUG || kVerbose > 0) { 1217 if(DEBUG || kVerbose > 0) { 1216 for(int j = 0; j < dsize; j++) { 1218 for(int j = 0; j < dsize; j++) { 1217 if(dimage[j] < 0) 1219 if(dimage[j] < 0) 1218 G4cout << "[" << j << "," << z << "]" 1220 G4cout << "[" << j << "," << z << "]" 1219 << dimage[j] << ", "; 1221 << dimage[j] << ", "; 1220 } 1222 } 1221 } 1223 } 1222 } 1224 } 1223 if(DEBUG || kVerbose > 0) G4cout << G4e 1225 if(DEBUG || kVerbose > 0) G4cout << G4endl; 1224 delete [] dimage; 1226 delete [] dimage; 1225 1227 1226 // relative location of the dose distri 1228 // relative location of the dose distribution image for 1227 // the modality image 1229 // the modality image 1228 getDoseDistCenterPosition(fCenter, ndos 1230 getDoseDistCenterPosition(fCenter, ndose); 1229 for(int i = 0; i < 3; i++) iCenter[i] = 1231 for(int i = 0; i < 3; i++) iCenter[i] = (int)fCenter[i]; 1230 ofile.write((char *)iCenter, 3*4); // 3 1232 ofile.write((char *)iCenter, 3*4); // 3*sizeof(int) 1231 if(DEBUG || kVerbose > 0) { 1233 if(DEBUG || kVerbose > 0) { 1232 G4cout << "Dose dist. [" << ndose 1234 G4cout << "Dose dist. [" << ndose 1233 << "]image relative location : (" 1235 << "]image relative location : (" 1234 << iCenter[0] << ", " 1236 << iCenter[0] << ", " 1235 << iCenter[1] << ", " 1237 << iCenter[1] << ", " 1236 << iCenter[2] << ")" << G4endl; 1238 << iCenter[2] << ")" << G4endl; 1237 } 1239 } 1238 } 1240 } 1239 } 1241 } 1240 1242 1241 //----- ROI image -----// 1243 //----- ROI image -----// 1242 if(!isROIEmpty()) { 1244 if(!isROIEmpty()) { 1243 // ROI image size 1245 // ROI image size 1244 kRoi[0].getSize(size); 1246 kRoi[0].getSize(size); 1245 ofile.write((char *)size, 3*sizeof(int)); 1247 ofile.write((char *)size, 3*sizeof(int)); 1246 if(DEBUG || kVerbose > 0) { 1248 if(DEBUG || kVerbose > 0) { 1247 G4cout << "ROI image size : (" 1249 G4cout << "ROI image size : (" 1248 << size[0] << ", " 1250 << size[0] << ", " 1249 << size[1] << ", " 1251 << size[1] << ", " 1250 << size[2] << ")" 1252 << size[2] << ")" 1251 << G4endl; 1253 << G4endl; 1252 } 1254 } 1253 1255 1254 // ROI max. & min. 1256 // ROI max. & min. 1255 kRoi[0].getMinMax(minmax); 1257 kRoi[0].getMinMax(minmax); 1256 ofile.write((char *)minmax, sizeof(short) 1258 ofile.write((char *)minmax, sizeof(short)*2); 1257 1259 1258 // ROI distribution scaling 1260 // ROI distribution scaling 1259 scale = (float)kRoi[0].getScale(); 1261 scale = (float)kRoi[0].getScale(); 1260 ofile.write((char *)&scale, sizeof(float) 1262 ofile.write((char *)&scale, sizeof(float)); 1261 if(DEBUG || kVerbose > 0) { 1263 if(DEBUG || kVerbose > 0) { 1262 G4cout << "ROI image min., max., scale 1264 G4cout << "ROI image min., max., scale : " 1263 << minmax[0] << ", " 1265 << minmax[0] << ", " 1264 << minmax[1] << ", " 1266 << minmax[1] << ", " 1265 << scale << G4endl; 1267 << scale << G4endl; 1266 } 1268 } 1267 1269 1268 // ROI image 1270 // ROI image 1269 int rsize = size[0]*size[1]; 1271 int rsize = size[0]*size[1]; 1270 for(int i = 0; i < size[2]; i++) { 1272 for(int i = 0; i < size[2]; i++) { 1271 short * rimage = kRoi[0].getImage(i); 1273 short * rimage = kRoi[0].getImage(i); 1272 ofile.write((char *)rimage, rsize*sizeo 1274 ofile.write((char *)rimage, rsize*sizeof(short)); 1273 1275 1274 } 1276 } 1275 1277 1276 // ROI relative location 1278 // ROI relative location 1277 kRoi[0].getCenterPosition(fCenter); 1279 kRoi[0].getCenterPosition(fCenter); 1278 for(int i = 0; i < 3; i++) iCenter[i] = ( 1280 for(int i = 0; i < 3; i++) iCenter[i] = (int)fCenter[i]; 1279 ofile.write((char *)iCenter, 3*sizeof(int 1281 ofile.write((char *)iCenter, 3*sizeof(int)); 1280 if(DEBUG || kVerbose > 0) { 1282 if(DEBUG || kVerbose > 0) { 1281 G4cout << "ROI image relative location 1283 G4cout << "ROI image relative location : (" 1282 << iCenter[0] << ", " 1284 << iCenter[0] << ", " 1283 << iCenter[1] << ", " 1285 << iCenter[1] << ", " 1284 << iCenter[2] << ")" << G4endl; 1286 << iCenter[2] << ")" << G4endl; 1285 } 1287 } 1286 } 1288 } 1287 1289 1288 //----- track information -----// 1290 //----- track information -----// 1289 // number of track 1291 // number of track 1290 int ntrk = (int)kSteps.size(); << 1292 int ntrk = kSteps.size(); 1291 ofile.write((char *)&ntrk, sizeof(int)); 1293 ofile.write((char *)&ntrk, sizeof(int)); 1292 if(DEBUG || kVerbose > 0) { 1294 if(DEBUG || kVerbose > 0) { 1293 G4cout << "# of tracks : " 1295 G4cout << "# of tracks : " 1294 << ntrk << G4endl; 1296 << ntrk << G4endl; 1295 } 1297 } 1296 // track position 1298 // track position 1297 for(int i = 0; i < ntrk; i++) { 1299 for(int i = 0; i < ntrk; i++) { 1298 float * tp = kSteps[i]; 1300 float * tp = kSteps[i]; 1299 ofile.write((char *)tp, sizeof(float)*6); 1301 ofile.write((char *)tp, sizeof(float)*6); 1300 } 1302 } 1301 // track color 1303 // track color 1302 int ntcolor = int(kStepColors.size()); 1304 int ntcolor = int(kStepColors.size()); 1303 if(ntrk != ntcolor) 1305 if(ntrk != ntcolor) 1304 if (G4VisManager::GetVerbosity() >= G4Vis 1306 if (G4VisManager::GetVerbosity() >= G4VisManager::errors) 1305 G4cout << "# of track color information 1307 G4cout << "# of track color information must be the same as # of tracks." 1306 << G4endl; 1308 << G4endl; 1307 unsigned char white[3] = {255,255,255}; // 1309 unsigned char white[3] = {255,255,255}; // default color 1308 for(int i = 0; i < ntrk; i++) { 1310 for(int i = 0; i < ntrk; i++) { 1309 if(i < ntcolor) { 1311 if(i < ntcolor) { 1310 unsigned char * tcolor = kStepColors[i] 1312 unsigned char * tcolor = kStepColors[i]; 1311 ofile.write((char *)tcolor, 3); 1313 ofile.write((char *)tcolor, 3); 1312 } else { 1314 } else { 1313 ofile.write((char *)white, 3); 1315 ofile.write((char *)white, 3); 1314 } 1316 } 1315 } 1317 } 1316 1318 1317 // file end mark 1319 // file end mark 1318 ofile.write("END", 3); 1320 ofile.write("END", 3); 1319 1321 1320 ofile.close(); 1322 ofile.close(); 1321 1323 1322 return true; 1324 return true; 1323 } 1325 } 1324 // 1326 // 1325 bool G4GMocrenIO::storeData4(char * _filename 1327 bool G4GMocrenIO::storeData4(char * _filename) { 1326 kFileName = _filename; 1328 kFileName = _filename; 1327 return storeData4(); 1329 return storeData4(); 1328 } 1330 } 1329 1331 1330 // version 2 1332 // version 2 1331 bool G4GMocrenIO::storeData2() { 1333 bool G4GMocrenIO::storeData2() { 1332 1334 1333 if(kVerbose > 0) G4cout << ">>>>>>> store 1335 if(kVerbose > 0) G4cout << ">>>>>>> store data (ver.2) <<<<<<<" << G4endl; 1334 if(kVerbose > 0) G4cout << " " << k 1336 if(kVerbose > 0) G4cout << " " << kFileName << G4endl; 1335 1337 1336 bool DEBUG = false;// 1338 bool DEBUG = false;// 1337 1339 1338 // output file open 1340 // output file open 1339 std::ofstream ofile(kFileName.c_str(), 1341 std::ofstream ofile(kFileName.c_str(), 1340 std::ios_base::out|std::ios_base::b 1342 std::ios_base::out|std::ios_base::binary); 1341 1343 1342 // file identifier 1344 // file identifier 1343 ofile.write("GRAPE ", 8); 1345 ofile.write("GRAPE ", 8); 1344 1346 1345 // file version 1347 // file version 1346 unsigned char ver = 0x02; 1348 unsigned char ver = 0x02; 1347 ofile.write((char *)&ver, 1); 1349 ofile.write((char *)&ver, 1); 1348 // file id for old file format support 1350 // file id for old file format support 1349 ofile.write(kId.c_str(), IDLENGTH); 1351 ofile.write(kId.c_str(), IDLENGTH); 1350 // file version for old file format support 1352 // file version for old file format support 1351 ofile.write(kVersion.c_str(), VERLENGTH); 1353 ofile.write(kVersion.c_str(), VERLENGTH); 1352 // endian 1354 // endian 1353 ofile.write((char *)&kLittleEndianOutput, s 1355 ofile.write((char *)&kLittleEndianOutput, sizeof(char)); 1354 1356 1355 /* 1357 /* 1356 // event number 1358 // event number 1357 ofile.write((char *)&numberOfEvents, sizeof 1359 ofile.write((char *)&numberOfEvents, sizeof(int)); 1358 float imageSpacing[3]; 1360 float imageSpacing[3]; 1359 imageSpacing[0] = modalityImageVoxelSpacing 1361 imageSpacing[0] = modalityImageVoxelSpacing[0]; 1360 imageSpacing[1] = modalityImageVoxelSpacing 1362 imageSpacing[1] = modalityImageVoxelSpacing[1]; 1361 imageSpacing[2] = modalityImageVoxelSpacing 1363 imageSpacing[2] = modalityImageVoxelSpacing[2]; 1362 ofile.write((char *)imageSpacing, 12); 1364 ofile.write((char *)imageSpacing, 12); 1363 */ 1365 */ 1364 1366 1365 1367 1366 // voxel spacings for all images 1368 // voxel spacings for all images 1367 ofile.write((char *)kVoxelSpacing, 12); 1369 ofile.write((char *)kVoxelSpacing, 12); 1368 if(DEBUG || kVerbose > 0) { 1370 if(DEBUG || kVerbose > 0) { 1369 G4cout << "Voxel spacing : (" 1371 G4cout << "Voxel spacing : (" 1370 << kVoxelSpacing[0] << ", " 1372 << kVoxelSpacing[0] << ", " 1371 << kVoxelSpacing[1] << ", " 1373 << kVoxelSpacing[1] << ", " 1372 << kVoxelSpacing[2] 1374 << kVoxelSpacing[2] 1373 << ") mm " << G4endl; 1375 << ") mm " << G4endl; 1374 } 1376 } 1375 1377 1376 calcPointers2(); 1378 calcPointers2(); 1377 // offset from file starting point to the m 1379 // offset from file starting point to the modality image data 1378 ofile.write((char *)&kPointerToModalityData 1380 ofile.write((char *)&kPointerToModalityData, 4); 1379 1381 1380 // offset from file starting point to the d 1382 // offset from file starting point to the dose image data 1381 ofile.write((char *)&kPointerToDoseDistData 1383 ofile.write((char *)&kPointerToDoseDistData[0], 4); 1382 1384 1383 // offset from file starting point to the R 1385 // offset from file starting point to the ROI image data 1384 ofile.write((char *)&kPointerToROIData, 4); 1386 ofile.write((char *)&kPointerToROIData, 4); 1385 1387 1386 // offset from file starting point to the t 1388 // offset from file starting point to the track data 1387 ofile.write((char *)&kPointerToTrackData, 4 1389 ofile.write((char *)&kPointerToTrackData, 4); 1388 if(DEBUG || kVerbose > 0) { 1390 if(DEBUG || kVerbose > 0) { 1389 G4cout << "Each pointer to data : " 1391 G4cout << "Each pointer to data : " 1390 << kPointerToModalityData << ", " 1392 << kPointerToModalityData << ", " 1391 << kPointerToDoseDistData[0] << ", " 1393 << kPointerToDoseDistData[0] << ", " 1392 << kPointerToROIData << ", " 1394 << kPointerToROIData << ", " 1393 << kPointerToTrackData << G4endl; 1395 << kPointerToTrackData << G4endl; 1394 } 1396 } 1395 1397 1396 //----- modality image -----// 1398 //----- modality image -----// 1397 1399 1398 int size[3]; 1400 int size[3]; 1399 float scale; 1401 float scale; 1400 short minmax[2]; 1402 short minmax[2]; 1401 float fCenter[3]; 1403 float fCenter[3]; 1402 int iCenter[3]; 1404 int iCenter[3]; 1403 // modality image size 1405 // modality image size 1404 kModality.getSize(size); 1406 kModality.getSize(size); 1405 ofile.write((char *)size, 3*sizeof(int)); 1407 ofile.write((char *)size, 3*sizeof(int)); 1406 if(DEBUG || kVerbose > 0) { 1408 if(DEBUG || kVerbose > 0) { 1407 G4cout << "Modality image size : (" 1409 G4cout << "Modality image size : (" 1408 << size[0] << ", " 1410 << size[0] << ", " 1409 << size[1] << ", " 1411 << size[1] << ", " 1410 << size[2] << ")" 1412 << size[2] << ")" 1411 << G4endl; 1413 << G4endl; 1412 } 1414 } 1413 1415 1414 // modality image max. & min. 1416 // modality image max. & min. 1415 kModality.getMinMax(minmax); 1417 kModality.getMinMax(minmax); 1416 ofile.write((char *)minmax, 4); 1418 ofile.write((char *)minmax, 4); 1417 1419 1418 // modality image unit 1420 // modality image unit 1419 //char munit[13] = "g/cm3 "; 1421 //char munit[13] = "g/cm3 "; 1420 //ofile.write((char *)&munit, 12); 1422 //ofile.write((char *)&munit, 12); 1421 1423 1422 // modality image scale 1424 // modality image scale 1423 scale = (float)kModality.getScale(); 1425 scale = (float)kModality.getScale(); 1424 ofile.write((char *)&scale, 4); 1426 ofile.write((char *)&scale, 4); 1425 if(DEBUG || kVerbose > 0) { 1427 if(DEBUG || kVerbose > 0) { 1426 G4cout << "Modality image min., max., sca 1428 G4cout << "Modality image min., max., scale : " 1427 << minmax[0] << ", " 1429 << minmax[0] << ", " 1428 << minmax[1] << ", " 1430 << minmax[1] << ", " 1429 << scale << G4endl; 1431 << scale << G4endl; 1430 } 1432 } 1431 1433 1432 // modality image 1434 // modality image 1433 int psize = size[0]*size[1]; 1435 int psize = size[0]*size[1]; 1434 if(DEBUG || kVerbose > 0) G4cout << "Modali 1436 if(DEBUG || kVerbose > 0) G4cout << "Modality image : "; 1435 for(int i = 0; i < size[2]; i++) { 1437 for(int i = 0; i < size[2]; i++) { 1436 short * image =kModality.getImage(i); 1438 short * image =kModality.getImage(i); 1437 ofile.write((char *)image, psize*sizeof(s 1439 ofile.write((char *)image, psize*sizeof(short)); 1438 1440 1439 if(DEBUG || kVerbose > 0) G4cout << "[" < 1441 if(DEBUG || kVerbose > 0) G4cout << "[" << i << "]" << image[(size_t)(psize*0.55)] << ", "; 1440 } 1442 } 1441 if(DEBUG || kVerbose > 0) G4cout << G4endl; 1443 if(DEBUG || kVerbose > 0) G4cout << G4endl; 1442 1444 1443 // modality desity map for CT value 1445 // modality desity map for CT value 1444 size_t msize = minmax[1] - minmax[0]+1; 1446 size_t msize = minmax[1] - minmax[0]+1; 1445 float * pdmap = new float[msize]; 1447 float * pdmap = new float[msize]; 1446 for(int i = 0; i < (int)msize; i++) pdmap[i 1448 for(int i = 0; i < (int)msize; i++) pdmap[i] =kModalityImageDensityMap[i]; 1447 ofile.write((char *)pdmap, msize*sizeof(flo 1449 ofile.write((char *)pdmap, msize*sizeof(float)); 1448 if(DEBUG || kVerbose > 0) { 1450 if(DEBUG || kVerbose > 0) { 1449 G4cout << "density map : " << std::ends; 1451 G4cout << "density map : " << std::ends; 1450 for(int i = 0; i < (int)msize; i+=50) 1452 for(int i = 0; i < (int)msize; i+=50) 1451 G4cout <<kModalityImageDensityMap[i] << 1453 G4cout <<kModalityImageDensityMap[i] << ", "; 1452 G4cout << G4endl; 1454 G4cout << G4endl; 1453 } 1455 } 1454 delete [] pdmap; 1456 delete [] pdmap; 1455 1457 1456 1458 1457 //----- dose distribution image -----// 1459 //----- dose distribution image -----// 1458 1460 1459 if(!isDoseEmpty()) { 1461 if(!isDoseEmpty()) { 1460 calcDoseDistScale(); 1462 calcDoseDistScale(); 1461 1463 1462 // dose distrbution image size 1464 // dose distrbution image size 1463 kDose[0].getSize(size); 1465 kDose[0].getSize(size); 1464 ofile.write((char *)size, 3*sizeof(int)); 1466 ofile.write((char *)size, 3*sizeof(int)); 1465 if(DEBUG || kVerbose > 0) { 1467 if(DEBUG || kVerbose > 0) { 1466 G4cout << "Dose dist. image size : (" 1468 G4cout << "Dose dist. image size : (" 1467 << size[0] << ", " 1469 << size[0] << ", " 1468 << size[1] << ", " 1470 << size[1] << ", " 1469 << size[2] << ")" 1471 << size[2] << ")" 1470 << G4endl; 1472 << G4endl; 1471 } 1473 } 1472 1474 1473 // dose distribution max. & min. 1475 // dose distribution max. & min. 1474 getShortDoseDistMinMax(minmax); 1476 getShortDoseDistMinMax(minmax); 1475 ofile.write((char *)minmax, sizeof(short) 1477 ofile.write((char *)minmax, sizeof(short)*2); 1476 1478 1477 // dose distribution scaling 1479 // dose distribution scaling 1478 scale = (float)kDose[0].getScale(); 1480 scale = (float)kDose[0].getScale(); 1479 ofile.write((char *)&scale, sizeof(float) 1481 ofile.write((char *)&scale, sizeof(float)); 1480 if(DEBUG || kVerbose > 0) { 1482 if(DEBUG || kVerbose > 0) { 1481 G4cout << "Dose dist. image min., max., 1483 G4cout << "Dose dist. image min., max., scale : " 1482 << minmax[0] << ", " 1484 << minmax[0] << ", " 1483 << minmax[1] << ", " 1485 << minmax[1] << ", " 1484 << scale << G4endl; 1486 << scale << G4endl; 1485 } 1487 } 1486 1488 1487 // dose distribution image 1489 // dose distribution image 1488 int dsize = size[0]*size[1]; 1490 int dsize = size[0]*size[1]; 1489 short * dimage = new short[dsize]; 1491 short * dimage = new short[dsize]; 1490 for(int z = 0; z < size[2]; z++) { 1492 for(int z = 0; z < size[2]; z++) { 1491 getShortDoseDist(dimage, z); 1493 getShortDoseDist(dimage, z); 1492 ofile.write((char *)dimage, dsize*sizeo 1494 ofile.write((char *)dimage, dsize*sizeof(short)); 1493 1495 1494 if(DEBUG || kVerbose > 0) { 1496 if(DEBUG || kVerbose > 0) { 1495 for(int j = 0; j < dsize; j++) { 1497 for(int j = 0; j < dsize; j++) { 1496 if(dimage[j] < 0) 1498 if(dimage[j] < 0) 1497 G4cout << "[" << j << "," << z << "]" 1499 G4cout << "[" << j << "," << z << "]" 1498 << dimage[j] << ", "; 1500 << dimage[j] << ", "; 1499 } 1501 } 1500 } 1502 } 1501 } 1503 } 1502 if(DEBUG || kVerbose > 0) G4cout << G4end 1504 if(DEBUG || kVerbose > 0) G4cout << G4endl; 1503 delete [] dimage; 1505 delete [] dimage; 1504 1506 1505 // relative location of the dose distribu 1507 // relative location of the dose distribution image for 1506 // the modality image 1508 // the modality image 1507 kDose[0].getCenterPosition(fCenter); 1509 kDose[0].getCenterPosition(fCenter); 1508 for(int i = 0; i < 3; i++) iCenter[i] = ( 1510 for(int i = 0; i < 3; i++) iCenter[i] = (int)fCenter[i]; 1509 ofile.write((char *)iCenter, 3*sizeof(int 1511 ofile.write((char *)iCenter, 3*sizeof(int)); 1510 if(DEBUG || kVerbose > 0) { 1512 if(DEBUG || kVerbose > 0) { 1511 G4cout << "Dose dist. image relative lo 1513 G4cout << "Dose dist. image relative location : (" 1512 << iCenter[0] << ", " 1514 << iCenter[0] << ", " 1513 << iCenter[1] << ", " 1515 << iCenter[1] << ", " 1514 << iCenter[2] << ")" << G4endl; 1516 << iCenter[2] << ")" << G4endl; 1515 } 1517 } 1516 1518 1517 } 1519 } 1518 1520 1519 //----- ROI image -----// 1521 //----- ROI image -----// 1520 if(!isROIEmpty()) { 1522 if(!isROIEmpty()) { 1521 // ROI image size 1523 // ROI image size 1522 kRoi[0].getSize(size); 1524 kRoi[0].getSize(size); 1523 ofile.write((char *)size, 3*sizeof(int)); 1525 ofile.write((char *)size, 3*sizeof(int)); 1524 if(DEBUG || kVerbose > 0) { 1526 if(DEBUG || kVerbose > 0) { 1525 G4cout << "ROI image size : (" 1527 G4cout << "ROI image size : (" 1526 << size[0] << ", " 1528 << size[0] << ", " 1527 << size[1] << ", " 1529 << size[1] << ", " 1528 << size[2] << ")" 1530 << size[2] << ")" 1529 << G4endl; 1531 << G4endl; 1530 } 1532 } 1531 1533 1532 // ROI max. & min. 1534 // ROI max. & min. 1533 kRoi[0].getMinMax(minmax); 1535 kRoi[0].getMinMax(minmax); 1534 ofile.write((char *)minmax, sizeof(short) 1536 ofile.write((char *)minmax, sizeof(short)*2); 1535 1537 1536 // ROI distribution scaling 1538 // ROI distribution scaling 1537 scale = (float)kRoi[0].getScale(); 1539 scale = (float)kRoi[0].getScale(); 1538 ofile.write((char *)&scale, sizeof(float) 1540 ofile.write((char *)&scale, sizeof(float)); 1539 if(DEBUG || kVerbose > 0) { 1541 if(DEBUG || kVerbose > 0) { 1540 G4cout << "ROI image min., max., scale 1542 G4cout << "ROI image min., max., scale : " 1541 << minmax[0] << ", " 1543 << minmax[0] << ", " 1542 << minmax[1] << ", " 1544 << minmax[1] << ", " 1543 << scale << G4endl; 1545 << scale << G4endl; 1544 } 1546 } 1545 1547 1546 // ROI image 1548 // ROI image 1547 int rsize = size[0]*size[1]; 1549 int rsize = size[0]*size[1]; 1548 for(int i = 0; i < size[2]; i++) { 1550 for(int i = 0; i < size[2]; i++) { 1549 short * rimage = kRoi[0].getImage(i); 1551 short * rimage = kRoi[0].getImage(i); 1550 ofile.write((char *)rimage, rsize*sizeo 1552 ofile.write((char *)rimage, rsize*sizeof(short)); 1551 1553 1552 } 1554 } 1553 1555 1554 // ROI relative location 1556 // ROI relative location 1555 kRoi[0].getCenterPosition(fCenter); 1557 kRoi[0].getCenterPosition(fCenter); 1556 for(int i = 0; i < 3; i++) iCenter[i] = ( 1558 for(int i = 0; i < 3; i++) iCenter[i] = (int)fCenter[i]; 1557 ofile.write((char *)iCenter, 3*sizeof(int 1559 ofile.write((char *)iCenter, 3*sizeof(int)); 1558 if(DEBUG || kVerbose > 0) { 1560 if(DEBUG || kVerbose > 0) { 1559 G4cout << "ROI image relative location 1561 G4cout << "ROI image relative location : (" 1560 << iCenter[0] << ", " 1562 << iCenter[0] << ", " 1561 << iCenter[1] << ", " 1563 << iCenter[1] << ", " 1562 << iCenter[2] << ")" << G4endl; 1564 << iCenter[2] << ")" << G4endl; 1563 } 1565 } 1564 } 1566 } 1565 1567 1566 1568 1567 //----- track information -----// 1569 //----- track information -----// 1568 // track 1570 // track 1569 int ntrk = (int)kSteps.size(); << 1571 int ntrk = kSteps.size(); 1570 ofile.write((char *)&ntrk, sizeof(int)); 1572 ofile.write((char *)&ntrk, sizeof(int)); 1571 if(DEBUG || kVerbose > 0) { 1573 if(DEBUG || kVerbose > 0) { 1572 G4cout << "# of tracks : " 1574 G4cout << "# of tracks : " 1573 << ntrk << G4endl; 1575 << ntrk << G4endl; 1574 } 1576 } 1575 for(int i = 0; i < ntrk; i++) { 1577 for(int i = 0; i < ntrk; i++) { 1576 float * tp = kSteps[i]; 1578 float * tp = kSteps[i]; 1577 ofile.write((char *)tp, sizeof(float)*6); 1579 ofile.write((char *)tp, sizeof(float)*6); 1578 } 1580 } 1579 1581 1580 1582 1581 // file end mark 1583 // file end mark 1582 ofile.write("END", 3); 1584 ofile.write("END", 3); 1583 1585 1584 ofile.close(); 1586 ofile.close(); 1585 1587 1586 return true; 1588 return true; 1587 } 1589 } 1588 // 1590 // 1589 bool G4GMocrenIO::storeData2(char * _filename 1591 bool G4GMocrenIO::storeData2(char * _filename) { 1590 kFileName = _filename; 1592 kFileName = _filename; 1591 return storeData(); 1593 return storeData(); 1592 } 1594 } 1593 1595 1594 bool G4GMocrenIO::retrieveData() { 1596 bool G4GMocrenIO::retrieveData() { 1595 1597 1596 // input file open 1598 // input file open 1597 std::ifstream ifile(kFileName.c_str(), std: 1599 std::ifstream ifile(kFileName.c_str(), std::ios_base::in|std::ios_base::binary); 1598 if(!ifile) { 1600 if(!ifile) { 1599 if (G4VisManager::GetVerbosity() >= G4Vis 1601 if (G4VisManager::GetVerbosity() >= G4VisManager::errors) 1600 G4cout << "Cannot open file: " << kFile 1602 G4cout << "Cannot open file: " << kFileName 1601 << " in G4GMocrenIO::retrieveData()." 1603 << " in G4GMocrenIO::retrieveData()." << G4endl; 1602 return false; 1604 return false; 1603 } 1605 } 1604 1606 1605 // file identifier 1607 // file identifier 1606 char verid[9]; 1608 char verid[9]; 1607 ifile.read((char *)verid, 8); 1609 ifile.read((char *)verid, 8); 1608 // file version 1610 // file version 1609 unsigned char ver; 1611 unsigned char ver; 1610 ifile.read((char *)&ver, 1); 1612 ifile.read((char *)&ver, 1); 1611 ifile.close(); 1613 ifile.close(); 1612 1614 1613 if(std::strncmp(verid, "gMocren", 7) == 0) 1615 if(std::strncmp(verid, "gMocren", 7) == 0) { 1614 if(ver == 0x03) { 1616 if(ver == 0x03) { 1615 G4cout << ">>>>>>> retrieve data (ver. 1617 G4cout << ">>>>>>> retrieve data (ver.3) <<<<<<<" << G4endl; 1616 G4cout << " " << kFileName << G 1618 G4cout << " " << kFileName << G4endl; 1617 retrieveData3(); 1619 retrieveData3(); 1618 } else if (ver == 0x04) { 1620 } else if (ver == 0x04) { 1619 G4cout << ">>>>>>> retrieve data (ver. 1621 G4cout << ">>>>>>> retrieve data (ver.4) <<<<<<<" << G4endl; 1620 G4cout << " " << kFileName << G 1622 G4cout << " " << kFileName << G4endl; 1621 retrieveData4(); 1623 retrieveData4(); 1622 } else { 1624 } else { 1623 if (G4VisManager::GetVerbosity() >= G4V 1625 if (G4VisManager::GetVerbosity() >= G4VisManager::errors) { 1624 G4cout << "Error -- invalid file version : 1626 G4cout << "Error -- invalid file version : " << (int)ver 1625 << G4endl; 1627 << G4endl; 1626 G4cout << " " << kFileName << G4end 1628 G4cout << " " << kFileName << G4endl; 1627 } 1629 } 1628 G4Exception("G4GMocrenIO::retrieveDadta << 1630 std::exit(-1); 1629 "gMocren2001", FatalExcepti << 1630 "Error."); << 1631 << 1632 } 1631 } 1633 } else if(std::strncmp(verid, "GRAPE", 5) = 1632 } else if(std::strncmp(verid, "GRAPE", 5) == 0) { 1634 G4cout << ">>>>>>> retrieve data (ver.2) 1633 G4cout << ">>>>>>> retrieve data (ver.2) <<<<<<<" << G4endl; 1635 G4cout << " " << kFileName << G4e 1634 G4cout << " " << kFileName << G4endl; 1636 retrieveData2(); 1635 retrieveData2(); 1637 } else { 1636 } else { 1638 if (G4VisManager::GetVerbosity() >= G4Vis 1637 if (G4VisManager::GetVerbosity() >= G4VisManager::errors) 1639 G4cout << kFileName << " was not gdd fi 1638 G4cout << kFileName << " was not gdd file." << G4endl; 1640 return false; 1639 return false; 1641 } 1640 } 1642 1641 1643 return true; 1642 return true; 1644 } 1643 } 1645 1644 1646 bool G4GMocrenIO::retrieveData(char * _filena 1645 bool G4GMocrenIO::retrieveData(char * _filename) { 1647 kFileName = _filename; 1646 kFileName = _filename; 1648 return retrieveData(); 1647 return retrieveData(); 1649 } 1648 } 1650 1649 1651 // 1650 // 1652 bool G4GMocrenIO::retrieveData4() { 1651 bool G4GMocrenIO::retrieveData4() { 1653 1652 1654 bool DEBUG = false;// 1653 bool DEBUG = false;// 1655 1654 1656 // input file open 1655 // input file open 1657 std::ifstream ifile(kFileName.c_str(), std: 1656 std::ifstream ifile(kFileName.c_str(), std::ios_base::in|std::ios_base::binary); 1658 if(!ifile) { 1657 if(!ifile) { 1659 if (G4VisManager::GetVerbosity() >= G4Vis 1658 if (G4VisManager::GetVerbosity() >= G4VisManager::errors) 1660 G4cout << "Cannot open file: " << kFile 1659 G4cout << "Cannot open file: " << kFileName 1661 << " in G4GMocrenIO::retrieveData3()." << 1660 << " in G4GMocrenIO::retrieveData3()." << G4endl; 1662 return false; 1661 return false; 1663 } 1662 } 1664 1663 1665 // data buffer 1664 // data buffer 1666 char ctmp[24]; << 1665 char ctmp[12]; 1667 1666 1668 // file identifier 1667 // file identifier 1669 char verid[9]; 1668 char verid[9]; 1670 ifile.read((char *)verid, 8); 1669 ifile.read((char *)verid, 8); 1671 1670 1672 // file version 1671 // file version 1673 unsigned char ver; 1672 unsigned char ver; 1674 ifile.read((char *)&ver, 1); 1673 ifile.read((char *)&ver, 1); 1675 std::stringstream ss; 1674 std::stringstream ss; 1676 ss << (int)ver; 1675 ss << (int)ver; 1677 kVersion = ss.str(); 1676 kVersion = ss.str(); 1678 if(DEBUG || kVerbose > 0) G4cout << "File v 1677 if(DEBUG || kVerbose > 0) G4cout << "File version : " << kVersion << G4endl; 1679 1678 1680 // endian 1679 // endian 1681 ifile.read((char *)&kLittleEndianInput, siz 1680 ifile.read((char *)&kLittleEndianInput, sizeof(char)); 1682 if(DEBUG || kVerbose > 0) { 1681 if(DEBUG || kVerbose > 0) { 1683 G4cout << "Endian : "; 1682 G4cout << "Endian : "; 1684 if(kLittleEndianInput == 1) 1683 if(kLittleEndianInput == 1) 1685 G4cout << " little" << G4endl; 1684 G4cout << " little" << G4endl; 1686 else { 1685 else { 1687 G4cout << " big" << G4endl; 1686 G4cout << " big" << G4endl; 1688 } 1687 } 1689 } 1688 } 1690 1689 1691 // comment length (fixed size) 1690 // comment length (fixed size) 1692 int clength; 1691 int clength; 1693 ifile.read((char *)ctmp, 4); 1692 ifile.read((char *)ctmp, 4); 1694 convertEndian(ctmp, clength); 1693 convertEndian(ctmp, clength); 1695 // comment 1694 // comment 1696 char cmt[1025]; 1695 char cmt[1025]; 1697 ifile.read((char *)cmt, clength); 1696 ifile.read((char *)cmt, clength); 1698 std::string scmt = cmt; 1697 std::string scmt = cmt; 1699 scmt += '\0'; 1698 scmt += '\0'; 1700 setComment(scmt); 1699 setComment(scmt); 1701 if(DEBUG || kVerbose > 0) { 1700 if(DEBUG || kVerbose > 0) { 1702 G4cout << "Data comment : " 1701 G4cout << "Data comment : " 1703 << kComment << G4endl; 1702 << kComment << G4endl; 1704 } 1703 } 1705 1704 1706 // voxel spacings for all images 1705 // voxel spacings for all images 1707 ifile.read((char *)ctmp, 12); 1706 ifile.read((char *)ctmp, 12); 1708 convertEndian(ctmp, kVoxelSpacing[0]); 1707 convertEndian(ctmp, kVoxelSpacing[0]); 1709 convertEndian(ctmp+4, kVoxelSpacing[1]); 1708 convertEndian(ctmp+4, kVoxelSpacing[1]); 1710 convertEndian(ctmp+8, kVoxelSpacing[2]); 1709 convertEndian(ctmp+8, kVoxelSpacing[2]); 1711 if(DEBUG || kVerbose > 0) { 1710 if(DEBUG || kVerbose > 0) { 1712 G4cout << "Voxel spacing : (" 1711 G4cout << "Voxel spacing : (" 1713 << kVoxelSpacing[0] << ", " 1712 << kVoxelSpacing[0] << ", " 1714 << kVoxelSpacing[1] << ", " 1713 << kVoxelSpacing[1] << ", " 1715 << kVoxelSpacing[2] 1714 << kVoxelSpacing[2] 1716 << ") mm " << G4endl; 1715 << ") mm " << G4endl; 1717 } 1716 } 1718 1717 1719 1718 1720 // offset from file starting point to the m 1719 // offset from file starting point to the modality image data 1721 ifile.read((char *)ctmp, 4); 1720 ifile.read((char *)ctmp, 4); 1722 convertEndian(ctmp, kPointerToModalityData) 1721 convertEndian(ctmp, kPointerToModalityData); 1723 1722 1724 // # of dose distributions 1723 // # of dose distributions 1725 ifile.read((char *)ctmp, 4); 1724 ifile.read((char *)ctmp, 4); 1726 int nDoseDist; 1725 int nDoseDist; 1727 convertEndian(ctmp, nDoseDist); 1726 convertEndian(ctmp, nDoseDist); 1728 1727 1729 // offset from file starting point to the d 1728 // offset from file starting point to the dose image data 1730 for(int i = 0; i < nDoseDist; i++) { 1729 for(int i = 0; i < nDoseDist; i++) { 1731 ifile.read((char *)ctmp, 4); 1730 ifile.read((char *)ctmp, 4); 1732 unsigned int dptr; 1731 unsigned int dptr; 1733 convertEndian(ctmp, dptr); 1732 convertEndian(ctmp, dptr); 1734 addPointerToDoseDistData(dptr); 1733 addPointerToDoseDistData(dptr); 1735 } 1734 } 1736 1735 1737 // offset from file starting point to the R 1736 // offset from file starting point to the ROI image data 1738 ifile.read((char *)ctmp, 4); 1737 ifile.read((char *)ctmp, 4); 1739 convertEndian(ctmp, kPointerToROIData); 1738 convertEndian(ctmp, kPointerToROIData); 1740 1739 1741 // offset from file starting point to the t 1740 // offset from file starting point to the track data 1742 ifile.read((char *)ctmp, 4); 1741 ifile.read((char *)ctmp, 4); 1743 convertEndian(ctmp, kPointerToTrackData); 1742 convertEndian(ctmp, kPointerToTrackData); 1744 1743 1745 // offset from file starting point to the d 1744 // offset from file starting point to the detector data 1746 ifile.read((char *)ctmp, 4); 1745 ifile.read((char *)ctmp, 4); 1747 convertEndian(ctmp, kPointerToDetectorData) 1746 convertEndian(ctmp, kPointerToDetectorData); 1748 1747 1749 if(DEBUG || kVerbose > 0) { 1748 if(DEBUG || kVerbose > 0) { 1750 G4cout << "Each pointer to data : " 1749 G4cout << "Each pointer to data : " 1751 << kPointerToModalityData << ", "; 1750 << kPointerToModalityData << ", "; 1752 for(int i = 0; i < nDoseDist; i++) 1751 for(int i = 0; i < nDoseDist; i++) 1753 G4cout << kPointerToDoseDistData[i] << 1752 G4cout << kPointerToDoseDistData[i] << ", "; 1754 G4cout << kPointerToROIData << ", " 1753 G4cout << kPointerToROIData << ", " 1755 << kPointerToTrackData << ", " 1754 << kPointerToTrackData << ", " 1756 << kPointerToDetectorData 1755 << kPointerToDetectorData 1757 << G4endl; 1756 << G4endl; 1758 } 1757 } 1759 1758 1760 1759 1761 1760 1762 if(kPointerToModalityData == 0 && kPointerT 1761 if(kPointerToModalityData == 0 && kPointerToDoseDistData.size() == 0 && 1763 kPointerToROIData == 0 && kPointerToTrac 1762 kPointerToROIData == 0 && kPointerToTrackData == 0) { 1764 if(DEBUG || kVerbose > 0) { 1763 if(DEBUG || kVerbose > 0) { 1765 G4cout << "No data." << G4endl; 1764 G4cout << "No data." << G4endl; 1766 } 1765 } 1767 return false; 1766 return false; 1768 } 1767 } 1769 1768 1770 // event number 1769 // event number 1771 /* ver 1 1770 /* ver 1 1772 ifile.read(ctmp, sizeof(int)); 1771 ifile.read(ctmp, sizeof(int)); 1773 convertEndian(ctmp, numberOfEvents); 1772 convertEndian(ctmp, numberOfEvents); 1774 */ 1773 */ 1775 1774 1776 int size[3]; 1775 int size[3]; 1777 float scale; 1776 float scale; 1778 double dscale; 1777 double dscale; 1779 short minmax[2]; 1778 short minmax[2]; 1780 float fCenter[3]; 1779 float fCenter[3]; 1781 int iCenter[3]; 1780 int iCenter[3]; 1782 1781 1783 //----- Modality image -----// 1782 //----- Modality image -----// 1784 // modality image size 1783 // modality image size 1785 ifile.read(ctmp, 3*sizeof(int)); 1784 ifile.read(ctmp, 3*sizeof(int)); 1786 convertEndian(ctmp, size[0]); 1785 convertEndian(ctmp, size[0]); 1787 convertEndian(ctmp+sizeof(int), size[1]); 1786 convertEndian(ctmp+sizeof(int), size[1]); 1788 convertEndian(ctmp+2*sizeof(int), size[2]); 1787 convertEndian(ctmp+2*sizeof(int), size[2]); 1789 if(DEBUG || kVerbose > 0) { 1788 if(DEBUG || kVerbose > 0) { 1790 G4cout << "Modality image size : (" 1789 G4cout << "Modality image size : (" 1791 << size[0] << ", " 1790 << size[0] << ", " 1792 << size[1] << ", " 1791 << size[1] << ", " 1793 << size[2] << ")" 1792 << size[2] << ")" 1794 << G4endl; 1793 << G4endl; 1795 } 1794 } 1796 kModality.setSize(size); 1795 kModality.setSize(size); 1797 1796 1798 // modality image voxel spacing 1797 // modality image voxel spacing 1799 /* 1798 /* 1800 ifile.read(ctmp, 3*sizeof(float)); 1799 ifile.read(ctmp, 3*sizeof(float)); 1801 convertEndian(ctmp, modalityImageVoxelSpa 1800 convertEndian(ctmp, modalityImageVoxelSpacing[0]); 1802 convertEndian(ctmp+sizeof(float), modalit 1801 convertEndian(ctmp+sizeof(float), modalityImageVoxelSpacing[1]); 1803 convertEndian(ctmp+2*sizeof(float), modal 1802 convertEndian(ctmp+2*sizeof(float), modalityImageVoxelSpacing[2]); 1804 */ 1803 */ 1805 1804 1806 if(kPointerToModalityData != 0) { 1805 if(kPointerToModalityData != 0) { 1807 1806 1808 // modality density max. & min. 1807 // modality density max. & min. 1809 ifile.read((char *)ctmp, 4); 1808 ifile.read((char *)ctmp, 4); 1810 convertEndian(ctmp, minmax[0]); 1809 convertEndian(ctmp, minmax[0]); 1811 convertEndian(ctmp+2, minmax[1]); 1810 convertEndian(ctmp+2, minmax[1]); 1812 kModality.setMinMax(minmax); 1811 kModality.setMinMax(minmax); 1813 1812 1814 // modality image unit 1813 // modality image unit 1815 char munit[13]; 1814 char munit[13]; 1816 munit[12] = '\0'; 1815 munit[12] = '\0'; 1817 ifile.read((char *)munit, 12); 1816 ifile.read((char *)munit, 12); 1818 std::string smunit = munit; 1817 std::string smunit = munit; 1819 setModalityImageUnit(smunit); 1818 setModalityImageUnit(smunit); 1820 1819 1821 // modality density scale 1820 // modality density scale 1822 ifile.read((char *)ctmp, 4); 1821 ifile.read((char *)ctmp, 4); 1823 convertEndian(ctmp, scale); 1822 convertEndian(ctmp, scale); 1824 kModality.setScale(dscale = scale); 1823 kModality.setScale(dscale = scale); 1825 if(DEBUG || kVerbose > 0) { 1824 if(DEBUG || kVerbose > 0) { 1826 G4cout << "Modality image min., max., s 1825 G4cout << "Modality image min., max., scale : " 1827 << minmax[0] << ", " 1826 << minmax[0] << ", " 1828 << minmax[1] << ", " 1827 << minmax[1] << ", " 1829 << scale << G4endl; 1828 << scale << G4endl; 1830 } 1829 } 1831 1830 1832 // modality density 1831 // modality density 1833 int psize = size[0]*size[1]; 1832 int psize = size[0]*size[1]; 1834 if(DEBUG || kVerbose > 0) G4cout << "Moda 1833 if(DEBUG || kVerbose > 0) G4cout << "Modality image (" << psize << "): "; 1835 char * cimage = new char[psize*sizeof(sho 1834 char * cimage = new char[psize*sizeof(short)]; 1836 for(int i = 0; i < size[2]; i++) { 1835 for(int i = 0; i < size[2]; i++) { 1837 ifile.read((char *)cimage, psize*sizeof 1836 ifile.read((char *)cimage, psize*sizeof(short)); 1838 short * mimage = new short[psize]; 1837 short * mimage = new short[psize]; 1839 for(int j = 0; j < psize; j++) { 1838 for(int j = 0; j < psize; j++) { 1840 convertEndian(cimage+j*sizeof(short), mimag 1839 convertEndian(cimage+j*sizeof(short), mimage[j]); 1841 } 1840 } 1842 kModality.addImage(mimage); 1841 kModality.addImage(mimage); 1843 1842 1844 if(DEBUG || kVerbose > 0) G4cout << "[" 1843 if(DEBUG || kVerbose > 0) G4cout << "[" << i << "]" << mimage[(size_t)(psize*0.55)] << ", "; 1845 } 1844 } 1846 if(DEBUG || kVerbose > 0) G4cout << G4end 1845 if(DEBUG || kVerbose > 0) G4cout << G4endl; 1847 delete [] cimage; 1846 delete [] cimage; 1848 1847 1849 // modality desity map for CT value 1848 // modality desity map for CT value 1850 size_t msize = minmax[1]-minmax[0]+1; 1849 size_t msize = minmax[1]-minmax[0]+1; 1851 if(DEBUG || kVerbose > 0) G4cout << "msiz 1850 if(DEBUG || kVerbose > 0) G4cout << "msize: " << msize << G4endl; 1852 char * pdmap = new char[msize*sizeof(floa 1851 char * pdmap = new char[msize*sizeof(float)]; 1853 ifile.read((char *)pdmap, msize*sizeof(fl 1852 ifile.read((char *)pdmap, msize*sizeof(float)); 1854 float ftmp; 1853 float ftmp; 1855 for(int i = 0; i < (int)msize; i++) { 1854 for(int i = 0; i < (int)msize; i++) { 1856 convertEndian(pdmap+i*sizeof(float), ft 1855 convertEndian(pdmap+i*sizeof(float), ftmp); 1857 kModalityImageDensityMap.push_back(ftmp 1856 kModalityImageDensityMap.push_back(ftmp); 1858 } 1857 } 1859 delete [] pdmap; << 1860 << 1861 if(DEBUG || kVerbose > 0) { 1858 if(DEBUG || kVerbose > 0) { 1862 G4cout << "density map : " << std::ends 1859 G4cout << "density map : " << std::ends; 1863 for(int i = 0; i < 10; i++) 1860 for(int i = 0; i < 10; i++) 1864 G4cout <<kModalityImageDensityMap[i] << ", 1861 G4cout <<kModalityImageDensityMap[i] << ", "; 1865 G4cout << G4endl; 1862 G4cout << G4endl; 1866 for(int i = 0; i < 10; i++) G4cout << " 1863 for(int i = 0; i < 10; i++) G4cout << ".."; 1867 G4cout << G4endl; 1864 G4cout << G4endl; 1868 for(size_t i =kModalityImageDensityMap. 1865 for(size_t i =kModalityImageDensityMap.size() - 10; i <kModalityImageDensityMap.size(); i++) 1869 G4cout <<kModalityImageDensityMap[i] << ", 1866 G4cout <<kModalityImageDensityMap[i] << ", "; 1870 G4cout << G4endl; 1867 G4cout << G4endl; 1871 } 1868 } 1872 1869 1873 } 1870 } 1874 1871 1875 1872 1876 //----- dose distribution image -----// 1873 //----- dose distribution image -----// 1877 for(int ndose = 0; ndose < nDoseDist; ndose 1874 for(int ndose = 0; ndose < nDoseDist; ndose++) { 1878 1875 1879 newDoseDist(); 1876 newDoseDist(); 1880 1877 1881 // dose distrbution image size 1878 // dose distrbution image size 1882 ifile.read((char *)ctmp, 3*sizeof(int)); 1879 ifile.read((char *)ctmp, 3*sizeof(int)); 1883 convertEndian(ctmp, size[0]); 1880 convertEndian(ctmp, size[0]); 1884 convertEndian(ctmp+sizeof(int), size[1]); 1881 convertEndian(ctmp+sizeof(int), size[1]); 1885 convertEndian(ctmp+2*sizeof(int), size[2] 1882 convertEndian(ctmp+2*sizeof(int), size[2]); 1886 if(DEBUG || kVerbose > 0) { 1883 if(DEBUG || kVerbose > 0) { 1887 G4cout << "Dose dist. image size : (" 1884 G4cout << "Dose dist. image size : (" 1888 << size[0] << ", " 1885 << size[0] << ", " 1889 << size[1] << ", " 1886 << size[1] << ", " 1890 << size[2] << ")" 1887 << size[2] << ")" 1891 << G4endl; 1888 << G4endl; 1892 } 1889 } 1893 kDose[ndose].setSize(size); 1890 kDose[ndose].setSize(size); 1894 1891 1895 // dose distribution max. & min. 1892 // dose distribution max. & min. 1896 ifile.read((char *)ctmp, sizeof(short)*2) 1893 ifile.read((char *)ctmp, sizeof(short)*2); 1897 convertEndian(ctmp, minmax[0]); 1894 convertEndian(ctmp, minmax[0]); 1898 convertEndian(ctmp+2, minmax[1]); 1895 convertEndian(ctmp+2, minmax[1]); 1899 1896 1900 // dose distribution unit 1897 // dose distribution unit 1901 char dunit[13]; 1898 char dunit[13]; 1902 dunit[12] = '\0'; 1899 dunit[12] = '\0'; 1903 ifile.read((char *)dunit, 12); 1900 ifile.read((char *)dunit, 12); 1904 std::string sdunit = dunit; 1901 std::string sdunit = dunit; 1905 setDoseDistUnit(sdunit, ndose); 1902 setDoseDistUnit(sdunit, ndose); 1906 if(DEBUG || kVerbose > 0) { 1903 if(DEBUG || kVerbose > 0) { 1907 G4cout << "Dose dist. unit : " << kDose 1904 G4cout << "Dose dist. unit : " << kDoseUnit << G4endl; 1908 } 1905 } 1909 1906 1910 // dose distribution scaling 1907 // dose distribution scaling 1911 ifile.read((char *)ctmp, 4); // sizeof(fl 1908 ifile.read((char *)ctmp, 4); // sizeof(float) 1912 convertEndian(ctmp, scale); 1909 convertEndian(ctmp, scale); 1913 kDose[ndose].setScale(dscale = scale); 1910 kDose[ndose].setScale(dscale = scale); 1914 1911 1915 double dminmax[2]; 1912 double dminmax[2]; 1916 for(int i = 0; i < 2; i++) dminmax[i] = m 1913 for(int i = 0; i < 2; i++) dminmax[i] = minmax[i]*dscale; 1917 kDose[ndose].setMinMax(dminmax); 1914 kDose[ndose].setMinMax(dminmax); 1918 1915 1919 if(DEBUG || kVerbose > 0) { 1916 if(DEBUG || kVerbose > 0) { 1920 G4cout << "Dose dist. image min., max., 1917 G4cout << "Dose dist. image min., max., scale : " 1921 << dminmax[0] << ", " 1918 << dminmax[0] << ", " 1922 << dminmax[1] << ", " 1919 << dminmax[1] << ", " 1923 << scale << G4endl; 1920 << scale << G4endl; 1924 } 1921 } 1925 1922 1926 // dose distribution image 1923 // dose distribution image 1927 int dsize = size[0]*size[1]; 1924 int dsize = size[0]*size[1]; 1928 if(DEBUG || kVerbose > 0) G4cout << "Dose 1925 if(DEBUG || kVerbose > 0) G4cout << "Dose dist. (" << dsize << "): "; 1929 char * di = new char[dsize*sizeof(short)] 1926 char * di = new char[dsize*sizeof(short)]; 1930 short * shimage = new short[dsize]; 1927 short * shimage = new short[dsize]; 1931 for(int z = 0; z < size[2]; z++) { 1928 for(int z = 0; z < size[2]; z++) { 1932 ifile.read((char *)di, dsize*sizeof(sho 1929 ifile.read((char *)di, dsize*sizeof(short)); 1933 double * dimage = new double[dsize]; 1930 double * dimage = new double[dsize]; 1934 for(int xy = 0; xy < dsize; xy++) { 1931 for(int xy = 0; xy < dsize; xy++) { 1935 convertEndian(di+xy*sizeof(short), shimage[ 1932 convertEndian(di+xy*sizeof(short), shimage[xy]); 1936 dimage[xy] = shimage[xy]*dscale; 1933 dimage[xy] = shimage[xy]*dscale; 1937 } 1934 } 1938 kDose[ndose].addImage(dimage); 1935 kDose[ndose].addImage(dimage); 1939 1936 1940 if(DEBUG || kVerbose > 0) G4cout << "[" 1937 if(DEBUG || kVerbose > 0) G4cout << "[" << z << "]" << dimage[(size_t)(dsize*0.55)] << ", "; 1941 1938 1942 if(DEBUG || kVerbose > 0) { 1939 if(DEBUG || kVerbose > 0) { 1943 for(int j = 0; j < dsize; j++) { 1940 for(int j = 0; j < dsize; j++) { 1944 if(dimage[j] < 0) 1941 if(dimage[j] < 0) 1945 G4cout << "[" << j << "," << z << "]" 1942 G4cout << "[" << j << "," << z << "]" 1946 << dimage[j] << ", "; 1943 << dimage[j] << ", "; 1947 } 1944 } 1948 } 1945 } 1949 } 1946 } 1950 delete [] shimage; 1947 delete [] shimage; 1951 delete [] di; 1948 delete [] di; 1952 if(DEBUG || kVerbose > 0) G4cout << G4end 1949 if(DEBUG || kVerbose > 0) G4cout << G4endl; 1953 1950 1954 ifile.read((char *)ctmp, 3*4); // 3*sizeo 1951 ifile.read((char *)ctmp, 3*4); // 3*sizeof(int) 1955 convertEndian(ctmp, iCenter[0]); 1952 convertEndian(ctmp, iCenter[0]); 1956 convertEndian(ctmp+4, iCenter[1]); 1953 convertEndian(ctmp+4, iCenter[1]); 1957 convertEndian(ctmp+8, iCenter[2]); 1954 convertEndian(ctmp+8, iCenter[2]); 1958 for(int i = 0; i < 3; i++) fCenter[i] = ( 1955 for(int i = 0; i < 3; i++) fCenter[i] = (float)iCenter[i]; 1959 kDose[ndose].setCenterPosition(fCenter); 1956 kDose[ndose].setCenterPosition(fCenter); 1960 1957 1961 if(DEBUG || kVerbose > 0) { 1958 if(DEBUG || kVerbose > 0) { 1962 G4cout << "Dose dist. image relative lo 1959 G4cout << "Dose dist. image relative location : (" 1963 << fCenter[0] << ", " 1960 << fCenter[0] << ", " 1964 << fCenter[1] << ", " 1961 << fCenter[1] << ", " 1965 << fCenter[2] << ")" << G4endl; 1962 << fCenter[2] << ")" << G4endl; 1966 } 1963 } 1967 1964 1968 1965 1969 // dose distribution name 1966 // dose distribution name 1970 char cname[81]; 1967 char cname[81]; 1971 ifile.read((char *)cname, 80); 1968 ifile.read((char *)cname, 80); 1972 std::string dosename = cname; 1969 std::string dosename = cname; 1973 setDoseDistName(dosename, ndose); 1970 setDoseDistName(dosename, ndose); 1974 if(DEBUG || kVerbose > 0) { 1971 if(DEBUG || kVerbose > 0) { 1975 G4cout << "Dose dist. name : " << dosen 1972 G4cout << "Dose dist. name : " << dosename << G4endl; 1976 } 1973 } 1977 1974 1978 } 1975 } 1979 1976 1980 //----- ROI image -----// 1977 //----- ROI image -----// 1981 if(kPointerToROIData != 0) { 1978 if(kPointerToROIData != 0) { 1982 1979 1983 newROI(); 1980 newROI(); 1984 1981 1985 // ROI image size 1982 // ROI image size 1986 ifile.read((char *)ctmp, 3*sizeof(int)); 1983 ifile.read((char *)ctmp, 3*sizeof(int)); 1987 convertEndian(ctmp, size[0]); 1984 convertEndian(ctmp, size[0]); 1988 convertEndian(ctmp+sizeof(int), size[1]); 1985 convertEndian(ctmp+sizeof(int), size[1]); 1989 convertEndian(ctmp+2*sizeof(int), size[2] 1986 convertEndian(ctmp+2*sizeof(int), size[2]); 1990 kRoi[0].setSize(size); 1987 kRoi[0].setSize(size); 1991 if(DEBUG || kVerbose > 0) { 1988 if(DEBUG || kVerbose > 0) { 1992 G4cout << "ROI image size : (" 1989 G4cout << "ROI image size : (" 1993 << size[0] << ", " 1990 << size[0] << ", " 1994 << size[1] << ", " 1991 << size[1] << ", " 1995 << size[2] << ")" 1992 << size[2] << ")" 1996 << G4endl; 1993 << G4endl; 1997 } 1994 } 1998 1995 1999 // ROI max. & min. 1996 // ROI max. & min. 2000 ifile.read((char *)ctmp, sizeof(short)*2) 1997 ifile.read((char *)ctmp, sizeof(short)*2); 2001 convertEndian(ctmp, minmax[0]); 1998 convertEndian(ctmp, minmax[0]); 2002 convertEndian(ctmp+sizeof(short), minmax[ 1999 convertEndian(ctmp+sizeof(short), minmax[1]); 2003 kRoi[0].setMinMax(minmax); 2000 kRoi[0].setMinMax(minmax); 2004 2001 2005 // ROI distribution scaling 2002 // ROI distribution scaling 2006 ifile.read((char *)ctmp, sizeof(float)); 2003 ifile.read((char *)ctmp, sizeof(float)); 2007 convertEndian(ctmp, scale); 2004 convertEndian(ctmp, scale); 2008 kRoi[0].setScale(dscale = scale); 2005 kRoi[0].setScale(dscale = scale); 2009 if(DEBUG || kVerbose > 0) { 2006 if(DEBUG || kVerbose > 0) { 2010 G4cout << "ROI image min., max., scale 2007 G4cout << "ROI image min., max., scale : " 2011 << minmax[0] << ", " 2008 << minmax[0] << ", " 2012 << minmax[1] << ", " 2009 << minmax[1] << ", " 2013 << scale << G4endl; 2010 << scale << G4endl; 2014 } 2011 } 2015 2012 2016 // ROI image 2013 // ROI image 2017 int rsize = size[0]*size[1]; 2014 int rsize = size[0]*size[1]; 2018 char * ri = new char[rsize*sizeof(short)] 2015 char * ri = new char[rsize*sizeof(short)]; 2019 for(int i = 0; i < size[2]; i++) { 2016 for(int i = 0; i < size[2]; i++) { 2020 ifile.read((char *)ri, rsize*sizeof(sho 2017 ifile.read((char *)ri, rsize*sizeof(short)); 2021 short * rimage = new short[rsize]; 2018 short * rimage = new short[rsize]; 2022 for(int j = 0; j < rsize; j++) { 2019 for(int j = 0; j < rsize; j++) { 2023 convertEndian(ri+j*sizeof(short), rimage[j] 2020 convertEndian(ri+j*sizeof(short), rimage[j]); 2024 } 2021 } 2025 kRoi[0].addImage(rimage); 2022 kRoi[0].addImage(rimage); 2026 2023 2027 } 2024 } 2028 delete [] ri; 2025 delete [] ri; 2029 2026 2030 // ROI relative location 2027 // ROI relative location 2031 ifile.read((char *)ctmp, 3*sizeof(int)); 2028 ifile.read((char *)ctmp, 3*sizeof(int)); 2032 convertEndian(ctmp, iCenter[0]); 2029 convertEndian(ctmp, iCenter[0]); 2033 convertEndian(ctmp+sizeof(int), iCenter[1 2030 convertEndian(ctmp+sizeof(int), iCenter[1]); 2034 convertEndian(ctmp+2*sizeof(int), iCenter 2031 convertEndian(ctmp+2*sizeof(int), iCenter[2]); 2035 for(int i = 0; i < 3; i++) fCenter[i] = i 2032 for(int i = 0; i < 3; i++) fCenter[i] = iCenter[i]; 2036 kRoi[0].setCenterPosition(fCenter); 2033 kRoi[0].setCenterPosition(fCenter); 2037 if(DEBUG || kVerbose > 0) { 2034 if(DEBUG || kVerbose > 0) { 2038 G4cout << "ROI image relative location 2035 G4cout << "ROI image relative location : (" 2039 << fCenter[0] << ", " 2036 << fCenter[0] << ", " 2040 << fCenter[1] << ", " 2037 << fCenter[1] << ", " 2041 << fCenter[2] << ")" << G4endl; 2038 << fCenter[2] << ")" << G4endl; 2042 } 2039 } 2043 2040 2044 } 2041 } 2045 2042 2046 //----- track information -----// 2043 //----- track information -----// 2047 if(kPointerToTrackData != 0) { 2044 if(kPointerToTrackData != 0) { 2048 2045 2049 // track 2046 // track 2050 ifile.read((char *)ctmp, sizeof(int)); 2047 ifile.read((char *)ctmp, sizeof(int)); 2051 int ntrk; 2048 int ntrk; 2052 convertEndian(ctmp, ntrk); 2049 convertEndian(ctmp, ntrk); 2053 if(DEBUG || kVerbose > 0) { 2050 if(DEBUG || kVerbose > 0) { 2054 G4cout << "# of tracks: " << ntrk << G4 2051 G4cout << "# of tracks: " << ntrk << G4endl; 2055 } 2052 } 2056 2053 2057 // track position 2054 // track position 2058 unsigned char rgb[3]; 2055 unsigned char rgb[3]; 2059 for(int i = 0; i < ntrk; i++) { 2056 for(int i = 0; i < ntrk; i++) { 2060 2057 2061 2058 2062 // # of steps in a track 2059 // # of steps in a track 2063 ifile.read((char *)ctmp, sizeof(int)); 2060 ifile.read((char *)ctmp, sizeof(int)); 2064 int nsteps; 2061 int nsteps; 2065 convertEndian(ctmp, nsteps); 2062 convertEndian(ctmp, nsteps); 2066 2063 2067 // track color 2064 // track color 2068 ifile.read((char *)rgb, 3); 2065 ifile.read((char *)rgb, 3); 2069 2066 2070 std::vector<float *> steps; 2067 std::vector<float *> steps; 2071 // steps 2068 // steps 2072 for(int j = 0; j < nsteps; j++) { 2069 for(int j = 0; j < nsteps; j++) { 2073 2070 2074 float * steppoint = new float[6]; 2071 float * steppoint = new float[6]; 2075 ifile.read((char *)ctmp, sizeof(float)*6); 2072 ifile.read((char *)ctmp, sizeof(float)*6); 2076 2073 2077 for(int k = 0; k < 6; k++) { 2074 for(int k = 0; k < 6; k++) { 2078 convertEndian(ctmp+k*sizeof(float), stepp 2075 convertEndian(ctmp+k*sizeof(float), steppoint[k]); 2079 } 2076 } 2080 2077 2081 steps.push_back(steppoint); 2078 steps.push_back(steppoint); 2082 } 2079 } 2083 2080 2084 // add a track to the track container 2081 // add a track to the track container 2085 addTrack(steps, rgb); 2082 addTrack(steps, rgb); 2086 2083 2087 if(DEBUG || kVerbose > 0) { 2084 if(DEBUG || kVerbose > 0) { 2088 if(i < 5) { 2085 if(i < 5) { 2089 G4cout << i << ": " ; 2086 G4cout << i << ": " ; 2090 for(int j = 0; j < 3; j++) G4cout << step 2087 for(int j = 0; j < 3; j++) G4cout << steps[0][j] << " "; 2091 int nstp = (int)steps.size(); << 2088 int nstp = steps.size(); 2092 G4cout << "<-> "; 2089 G4cout << "<-> "; 2093 for(int j = 3; j < 6; j++) G4cout << step 2090 for(int j = 3; j < 6; j++) G4cout << steps[nstp-1][j] << " "; 2094 G4cout << " rgb( "; 2091 G4cout << " rgb( "; 2095 for(int j = 0; j < 3; j++) G4cout << (int 2092 for(int j = 0; j < 3; j++) G4cout << (int)rgb[j] << " "; 2096 G4cout << ")" << G4endl; 2093 G4cout << ")" << G4endl; 2097 } 2094 } 2098 } 2095 } 2099 } 2096 } 2100 2097 2101 2098 2102 } 2099 } 2103 2100 2104 2101 2105 //----- detector information -----// 2102 //----- detector information -----// 2106 if(kPointerToDetectorData != 0) { 2103 if(kPointerToDetectorData != 0) { 2107 2104 2108 // number of detectors 2105 // number of detectors 2109 ifile.read((char *)ctmp, sizeof(int)); 2106 ifile.read((char *)ctmp, sizeof(int)); 2110 int ndet; 2107 int ndet; 2111 convertEndian(ctmp, ndet); 2108 convertEndian(ctmp, ndet); 2112 2109 2113 if(DEBUG || kVerbose > 0) { 2110 if(DEBUG || kVerbose > 0) { 2114 G4cout << "# of detectors : " 2111 G4cout << "# of detectors : " 2115 << ndet << G4endl; 2112 << ndet << G4endl; 2116 } 2113 } 2117 2114 2118 for(int nd = 0; nd < ndet; nd++) { 2115 for(int nd = 0; nd < ndet; nd++) { 2119 2116 2120 // # of edges of a detector 2117 // # of edges of a detector 2121 ifile.read((char *)ctmp, sizeof(int)); 2118 ifile.read((char *)ctmp, sizeof(int)); 2122 int nedges; 2119 int nedges; 2123 convertEndian(ctmp, nedges); 2120 convertEndian(ctmp, nedges); 2124 if(DEBUG || kVerbose > 0) { 2121 if(DEBUG || kVerbose > 0) { 2125 G4cout << "# of edges in a detector : " << 2122 G4cout << "# of edges in a detector : " << nedges << G4endl; 2126 } 2123 } 2127 2124 2128 // edges 2125 // edges 2129 std::vector<float *> detector; 2126 std::vector<float *> detector; 2130 char cftmp[24]; 2127 char cftmp[24]; 2131 for(int ne = 0; ne < nedges; ne++) { 2128 for(int ne = 0; ne < nedges; ne++) { 2132 2129 2133 ifile.read((char *)cftmp, sizeof(float)*6); 2130 ifile.read((char *)cftmp, sizeof(float)*6); 2134 float * edgePoints = new float[6]; 2131 float * edgePoints = new float[6]; 2135 for(int j = 0; j < 6; j++) convertEndian(&c 2132 for(int j = 0; j < 6; j++) convertEndian(&cftmp[sizeof(float)*j], edgePoints[j]); 2136 detector.push_back(edgePoints); 2133 detector.push_back(edgePoints); 2137 2134 2138 } 2135 } 2139 2136 2140 if(DEBUG || kVerbose > 0) { 2137 if(DEBUG || kVerbose > 0) { 2141 G4cout << " first edge : (" << detector[0][ 2138 G4cout << " first edge : (" << detector[0][0] << ", " 2142 << detector[0][1] << ", " 2139 << detector[0][1] << ", " 2143 << detector[0][2] << ") - (" 2140 << detector[0][2] << ") - (" 2144 << detector[0][3] << ", " 2141 << detector[0][3] << ", " 2145 << detector[0][4] << ", " 2142 << detector[0][4] << ", " 2146 << detector[0][5] << ")" << G4endl; 2143 << detector[0][5] << ")" << G4endl; 2147 } 2144 } 2148 2145 2149 // detector color 2146 // detector color 2150 unsigned char dcolor[3]; 2147 unsigned char dcolor[3]; 2151 ifile.read((char *)dcolor, 3); 2148 ifile.read((char *)dcolor, 3); 2152 if(DEBUG || kVerbose > 0) { 2149 if(DEBUG || kVerbose > 0) { 2153 G4cout << " detector color : rgb(" 2150 G4cout << " detector color : rgb(" 2154 << (int)dcolor[0] << ", " 2151 << (int)dcolor[0] << ", " 2155 << (int)dcolor[1] << ", " 2152 << (int)dcolor[1] << ", " 2156 << (int)dcolor[2] << G4endl; 2153 << (int)dcolor[2] << G4endl; 2157 } 2154 } 2158 2155 2159 2156 2160 // detector name 2157 // detector name 2161 char cname[80]; 2158 char cname[80]; 2162 ifile.read((char *)cname, 80); 2159 ifile.read((char *)cname, 80); 2163 std::string dname = cname; 2160 std::string dname = cname; 2164 if(DEBUG || kVerbose > 0) { 2161 if(DEBUG || kVerbose > 0) { 2165 G4cout << " detector name : " << dname << G 2162 G4cout << " detector name : " << dname << G4endl; 2166 } 2163 } 2167 2164 2168 2165 2169 addDetector(dname, detector, dcolor); 2166 addDetector(dname, detector, dcolor); 2170 2167 2171 } 2168 } 2172 } 2169 } 2173 2170 2174 2171 2175 ifile.close(); 2172 ifile.close(); 2176 2173 2177 return true; 2174 return true; 2178 } 2175 } 2179 bool G4GMocrenIO::retrieveData4(char * _filen 2176 bool G4GMocrenIO::retrieveData4(char * _filename) { 2180 kFileName = _filename; 2177 kFileName = _filename; 2181 return retrieveData(); 2178 return retrieveData(); 2182 } 2179 } 2183 2180 2184 // 2181 // 2185 bool G4GMocrenIO::retrieveData3() { 2182 bool G4GMocrenIO::retrieveData3() { 2186 2183 2187 bool DEBUG = false;// 2184 bool DEBUG = false;// 2188 2185 2189 // input file open 2186 // input file open 2190 std::ifstream ifile(kFileName.c_str(), std: 2187 std::ifstream ifile(kFileName.c_str(), std::ios_base::in|std::ios_base::binary); 2191 if(!ifile) { 2188 if(!ifile) { 2192 if (G4VisManager::GetVerbosity() >= G4Vis 2189 if (G4VisManager::GetVerbosity() >= G4VisManager::errors) 2193 G4cout << "Cannot open file: " << kFile 2190 G4cout << "Cannot open file: " << kFileName 2194 << " in G4GMocrenIO::retrieveData3()." << 2191 << " in G4GMocrenIO::retrieveData3()." << G4endl; 2195 return false; 2192 return false; 2196 } 2193 } 2197 2194 2198 // data buffer 2195 // data buffer 2199 char ctmp[12]; 2196 char ctmp[12]; 2200 2197 2201 // file identifier 2198 // file identifier 2202 char verid[9]; 2199 char verid[9]; 2203 ifile.read((char *)verid, 8); 2200 ifile.read((char *)verid, 8); 2204 2201 2205 // file version 2202 // file version 2206 unsigned char ver; 2203 unsigned char ver; 2207 ifile.read((char *)&ver, 1); 2204 ifile.read((char *)&ver, 1); 2208 std::stringstream ss; 2205 std::stringstream ss; 2209 ss << (int)ver; 2206 ss << (int)ver; 2210 kVersion = ss.str(); 2207 kVersion = ss.str(); 2211 if(DEBUG || kVerbose > 0) G4cout << "File v 2208 if(DEBUG || kVerbose > 0) G4cout << "File version : " << kVersion << G4endl; 2212 2209 2213 // endian 2210 // endian 2214 ifile.read((char *)&kLittleEndianInput, siz 2211 ifile.read((char *)&kLittleEndianInput, sizeof(char)); 2215 if(DEBUG || kVerbose > 0) { 2212 if(DEBUG || kVerbose > 0) { 2216 G4cout << "Endian : "; 2213 G4cout << "Endian : "; 2217 if(kLittleEndianInput == 1) 2214 if(kLittleEndianInput == 1) 2218 G4cout << " little" << G4endl; 2215 G4cout << " little" << G4endl; 2219 else { 2216 else { 2220 G4cout << " big" << G4endl; 2217 G4cout << " big" << G4endl; 2221 } 2218 } 2222 } 2219 } 2223 2220 2224 // comment length (fixed size) 2221 // comment length (fixed size) 2225 int clength; 2222 int clength; 2226 ifile.read((char *)ctmp, 4); 2223 ifile.read((char *)ctmp, 4); 2227 convertEndian(ctmp, clength); 2224 convertEndian(ctmp, clength); 2228 // comment 2225 // comment 2229 char cmt[1025]; 2226 char cmt[1025]; 2230 ifile.read((char *)cmt, clength); 2227 ifile.read((char *)cmt, clength); 2231 std::string scmt = cmt; 2228 std::string scmt = cmt; 2232 setComment(scmt); 2229 setComment(scmt); 2233 if(DEBUG || kVerbose > 0) { 2230 if(DEBUG || kVerbose > 0) { 2234 G4cout << "Data comment : " 2231 G4cout << "Data comment : " 2235 << kComment << G4endl; 2232 << kComment << G4endl; 2236 } 2233 } 2237 2234 2238 // voxel spacings for all images 2235 // voxel spacings for all images 2239 ifile.read((char *)ctmp, 12); 2236 ifile.read((char *)ctmp, 12); 2240 convertEndian(ctmp, kVoxelSpacing[0]); 2237 convertEndian(ctmp, kVoxelSpacing[0]); 2241 convertEndian(ctmp+4, kVoxelSpacing[1]); 2238 convertEndian(ctmp+4, kVoxelSpacing[1]); 2242 convertEndian(ctmp+8, kVoxelSpacing[2]); 2239 convertEndian(ctmp+8, kVoxelSpacing[2]); 2243 if(DEBUG || kVerbose > 0) { 2240 if(DEBUG || kVerbose > 0) { 2244 G4cout << "Voxel spacing : (" 2241 G4cout << "Voxel spacing : (" 2245 << kVoxelSpacing[0] << ", " 2242 << kVoxelSpacing[0] << ", " 2246 << kVoxelSpacing[1] << ", " 2243 << kVoxelSpacing[1] << ", " 2247 << kVoxelSpacing[2] 2244 << kVoxelSpacing[2] 2248 << ") mm " << G4endl; 2245 << ") mm " << G4endl; 2249 } 2246 } 2250 2247 2251 2248 2252 // offset from file starting point to the m 2249 // offset from file starting point to the modality image data 2253 ifile.read((char *)ctmp, 4); 2250 ifile.read((char *)ctmp, 4); 2254 convertEndian(ctmp, kPointerToModalityData) 2251 convertEndian(ctmp, kPointerToModalityData); 2255 2252 2256 // # of dose distributions 2253 // # of dose distributions 2257 ifile.read((char *)ctmp, 4); 2254 ifile.read((char *)ctmp, 4); 2258 int nDoseDist; 2255 int nDoseDist; 2259 convertEndian(ctmp, nDoseDist); 2256 convertEndian(ctmp, nDoseDist); 2260 2257 2261 // offset from file starting point to the d 2258 // offset from file starting point to the dose image data 2262 for(int i = 0; i < nDoseDist; i++) { 2259 for(int i = 0; i < nDoseDist; i++) { 2263 ifile.read((char *)ctmp, 4); 2260 ifile.read((char *)ctmp, 4); 2264 unsigned int dptr; 2261 unsigned int dptr; 2265 convertEndian(ctmp, dptr); 2262 convertEndian(ctmp, dptr); 2266 addPointerToDoseDistData(dptr); 2263 addPointerToDoseDistData(dptr); 2267 } 2264 } 2268 2265 2269 // offset from file starting point to the R 2266 // offset from file starting point to the ROI image data 2270 ifile.read((char *)ctmp, 4); 2267 ifile.read((char *)ctmp, 4); 2271 convertEndian(ctmp, kPointerToROIData); 2268 convertEndian(ctmp, kPointerToROIData); 2272 2269 2273 // offset from file starting point to the t 2270 // offset from file starting point to the track data 2274 ifile.read((char *)ctmp, 4); 2271 ifile.read((char *)ctmp, 4); 2275 convertEndian(ctmp, kPointerToTrackData); 2272 convertEndian(ctmp, kPointerToTrackData); 2276 if(DEBUG || kVerbose > 0) { 2273 if(DEBUG || kVerbose > 0) { 2277 G4cout << "Each pointer to data : " 2274 G4cout << "Each pointer to data : " 2278 << kPointerToModalityData << ", "; 2275 << kPointerToModalityData << ", "; 2279 for(int i = 0; i < nDoseDist; i++) 2276 for(int i = 0; i < nDoseDist; i++) 2280 G4cout << kPointerToDoseDistData[0] << 2277 G4cout << kPointerToDoseDistData[0] << ", "; 2281 G4cout << kPointerToROIData << ", " 2278 G4cout << kPointerToROIData << ", " 2282 << kPointerToTrackData << G4endl; 2279 << kPointerToTrackData << G4endl; 2283 } 2280 } 2284 2281 2285 if(kPointerToModalityData == 0 && kPointerT 2282 if(kPointerToModalityData == 0 && kPointerToDoseDistData.size() == 0 && 2286 kPointerToROIData == 0 && kPointerToTrac 2283 kPointerToROIData == 0 && kPointerToTrackData == 0) { 2287 if(DEBUG || kVerbose > 0) { 2284 if(DEBUG || kVerbose > 0) { 2288 G4cout << "No data." << G4endl; 2285 G4cout << "No data." << G4endl; 2289 } 2286 } 2290 return false; 2287 return false; 2291 } 2288 } 2292 2289 2293 // event number 2290 // event number 2294 /* ver 1 2291 /* ver 1 2295 ifile.read(ctmp, sizeof(int)); 2292 ifile.read(ctmp, sizeof(int)); 2296 convertEndian(ctmp, numberOfEvents); 2293 convertEndian(ctmp, numberOfEvents); 2297 */ 2294 */ 2298 2295 2299 int size[3]; 2296 int size[3]; 2300 float scale; 2297 float scale; 2301 double dscale; 2298 double dscale; 2302 short minmax[2]; 2299 short minmax[2]; 2303 float fCenter[3]; 2300 float fCenter[3]; 2304 int iCenter[3]; 2301 int iCenter[3]; 2305 2302 2306 //----- Modality image -----// 2303 //----- Modality image -----// 2307 // modality image size 2304 // modality image size 2308 ifile.read(ctmp, 3*sizeof(int)); 2305 ifile.read(ctmp, 3*sizeof(int)); 2309 convertEndian(ctmp, size[0]); 2306 convertEndian(ctmp, size[0]); 2310 convertEndian(ctmp+sizeof(int), size[1]); 2307 convertEndian(ctmp+sizeof(int), size[1]); 2311 convertEndian(ctmp+2*sizeof(int), size[2]); 2308 convertEndian(ctmp+2*sizeof(int), size[2]); 2312 if(DEBUG || kVerbose > 0) { 2309 if(DEBUG || kVerbose > 0) { 2313 G4cout << "Modality image size : (" 2310 G4cout << "Modality image size : (" 2314 << size[0] << ", " 2311 << size[0] << ", " 2315 << size[1] << ", " 2312 << size[1] << ", " 2316 << size[2] << ")" 2313 << size[2] << ")" 2317 << G4endl; 2314 << G4endl; 2318 } 2315 } 2319 kModality.setSize(size); 2316 kModality.setSize(size); 2320 2317 2321 // modality image voxel spacing 2318 // modality image voxel spacing 2322 /* 2319 /* 2323 ifile.read(ctmp, 3*sizeof(float)); 2320 ifile.read(ctmp, 3*sizeof(float)); 2324 convertEndian(ctmp, modalityImageVoxelSpa 2321 convertEndian(ctmp, modalityImageVoxelSpacing[0]); 2325 convertEndian(ctmp+sizeof(float), modalit 2322 convertEndian(ctmp+sizeof(float), modalityImageVoxelSpacing[1]); 2326 convertEndian(ctmp+2*sizeof(float), modal 2323 convertEndian(ctmp+2*sizeof(float), modalityImageVoxelSpacing[2]); 2327 */ 2324 */ 2328 2325 2329 if(kPointerToModalityData != 0) { 2326 if(kPointerToModalityData != 0) { 2330 2327 2331 // modality density max. & min. 2328 // modality density max. & min. 2332 ifile.read((char *)ctmp, 4); 2329 ifile.read((char *)ctmp, 4); 2333 convertEndian(ctmp, minmax[0]); 2330 convertEndian(ctmp, minmax[0]); 2334 convertEndian(ctmp+2, minmax[1]); 2331 convertEndian(ctmp+2, minmax[1]); 2335 kModality.setMinMax(minmax); 2332 kModality.setMinMax(minmax); 2336 2333 2337 // modality image unit 2334 // modality image unit 2338 char munit[13]; 2335 char munit[13]; 2339 ifile.read((char *)munit, 12); 2336 ifile.read((char *)munit, 12); 2340 std::string smunit = munit; 2337 std::string smunit = munit; 2341 setModalityImageUnit(smunit); 2338 setModalityImageUnit(smunit); 2342 2339 2343 // modality density scale 2340 // modality density scale 2344 ifile.read((char *)ctmp, 4); 2341 ifile.read((char *)ctmp, 4); 2345 convertEndian(ctmp, scale); 2342 convertEndian(ctmp, scale); 2346 kModality.setScale(dscale = scale); 2343 kModality.setScale(dscale = scale); 2347 if(DEBUG || kVerbose > 0) { 2344 if(DEBUG || kVerbose > 0) { 2348 G4cout << "Modality image min., max., s 2345 G4cout << "Modality image min., max., scale : " 2349 << minmax[0] << ", " 2346 << minmax[0] << ", " 2350 << minmax[1] << ", " 2347 << minmax[1] << ", " 2351 << scale << G4endl; 2348 << scale << G4endl; 2352 } 2349 } 2353 2350 2354 // modality density 2351 // modality density 2355 int psize = size[0]*size[1]; 2352 int psize = size[0]*size[1]; 2356 if(DEBUG || kVerbose > 0) G4cout << "Moda 2353 if(DEBUG || kVerbose > 0) G4cout << "Modality image (" << psize << "): "; 2357 char * cimage = new char[psize*sizeof(sho 2354 char * cimage = new char[psize*sizeof(short)]; 2358 for(int i = 0; i < size[2]; i++) { 2355 for(int i = 0; i < size[2]; i++) { 2359 ifile.read((char *)cimage, psize*sizeof 2356 ifile.read((char *)cimage, psize*sizeof(short)); 2360 short * mimage = new short[psize]; 2357 short * mimage = new short[psize]; 2361 for(int j = 0; j < psize; j++) { 2358 for(int j = 0; j < psize; j++) { 2362 convertEndian(cimage+j*sizeof(short), mimag 2359 convertEndian(cimage+j*sizeof(short), mimage[j]); 2363 } 2360 } 2364 kModality.addImage(mimage); 2361 kModality.addImage(mimage); 2365 2362 2366 if(DEBUG || kVerbose > 0) G4cout << "[" 2363 if(DEBUG || kVerbose > 0) G4cout << "[" << i << "]" << mimage[(size_t)(psize*0.55)] << ", "; 2367 } 2364 } 2368 if(DEBUG || kVerbose > 0) G4cout << G4end 2365 if(DEBUG || kVerbose > 0) G4cout << G4endl; 2369 delete [] cimage; 2366 delete [] cimage; 2370 2367 2371 // modality desity map for CT value 2368 // modality desity map for CT value 2372 size_t msize = minmax[1]-minmax[0]+1; 2369 size_t msize = minmax[1]-minmax[0]+1; 2373 if(DEBUG || kVerbose > 0) G4cout << "msiz 2370 if(DEBUG || kVerbose > 0) G4cout << "msize: " << msize << G4endl; 2374 char * pdmap = new char[msize*sizeof(floa 2371 char * pdmap = new char[msize*sizeof(float)]; 2375 ifile.read((char *)pdmap, msize*sizeof(fl 2372 ifile.read((char *)pdmap, msize*sizeof(float)); 2376 float ftmp; 2373 float ftmp; 2377 for(int i = 0; i < (int)msize; i++) { 2374 for(int i = 0; i < (int)msize; i++) { 2378 convertEndian(pdmap+i*sizeof(float), ft 2375 convertEndian(pdmap+i*sizeof(float), ftmp); 2379 kModalityImageDensityMap.push_back(ftmp 2376 kModalityImageDensityMap.push_back(ftmp); 2380 } 2377 } 2381 delete [] pdmap; << 2382 if(DEBUG || kVerbose > 0) { 2378 if(DEBUG || kVerbose > 0) { 2383 G4cout << "density map : " << std::ends 2379 G4cout << "density map : " << std::ends; 2384 for(int i = 0; i < 10; i++) 2380 for(int i = 0; i < 10; i++) 2385 G4cout <<kModalityImageDensityMap[i] << ", 2381 G4cout <<kModalityImageDensityMap[i] << ", "; 2386 G4cout << G4endl; 2382 G4cout << G4endl; 2387 for(int i = 0; i < 10; i++) G4cout << " 2383 for(int i = 0; i < 10; i++) G4cout << ".."; 2388 G4cout << G4endl; 2384 G4cout << G4endl; 2389 for(size_t i =kModalityImageDensityMap. 2385 for(size_t i =kModalityImageDensityMap.size() - 10; i <kModalityImageDensityMap.size(); i++) 2390 G4cout <<kModalityImageDensityMap[i] << ", 2386 G4cout <<kModalityImageDensityMap[i] << ", "; 2391 G4cout << G4endl; 2387 G4cout << G4endl; 2392 } 2388 } 2393 2389 2394 } 2390 } 2395 2391 2396 2392 2397 //----- dose distribution image -----// 2393 //----- dose distribution image -----// 2398 for(int ndose = 0; ndose < nDoseDist; ndose 2394 for(int ndose = 0; ndose < nDoseDist; ndose++) { 2399 2395 2400 newDoseDist(); 2396 newDoseDist(); 2401 2397 2402 // dose distrbution image size 2398 // dose distrbution image size 2403 ifile.read((char *)ctmp, 3*sizeof(int)); 2399 ifile.read((char *)ctmp, 3*sizeof(int)); 2404 convertEndian(ctmp, size[0]); 2400 convertEndian(ctmp, size[0]); 2405 convertEndian(ctmp+sizeof(int), size[1]); 2401 convertEndian(ctmp+sizeof(int), size[1]); 2406 convertEndian(ctmp+2*sizeof(int), size[2] 2402 convertEndian(ctmp+2*sizeof(int), size[2]); 2407 if(DEBUG || kVerbose > 0) { 2403 if(DEBUG || kVerbose > 0) { 2408 G4cout << "Dose dist. image size : (" 2404 G4cout << "Dose dist. image size : (" 2409 << size[0] << ", " 2405 << size[0] << ", " 2410 << size[1] << ", " 2406 << size[1] << ", " 2411 << size[2] << ")" 2407 << size[2] << ")" 2412 << G4endl; 2408 << G4endl; 2413 } 2409 } 2414 kDose[ndose].setSize(size); 2410 kDose[ndose].setSize(size); 2415 2411 2416 // dose distribution max. & min. 2412 // dose distribution max. & min. 2417 ifile.read((char *)ctmp, sizeof(short)*2) 2413 ifile.read((char *)ctmp, sizeof(short)*2); 2418 convertEndian(ctmp, minmax[0]); 2414 convertEndian(ctmp, minmax[0]); 2419 convertEndian(ctmp+2, minmax[1]); 2415 convertEndian(ctmp+2, minmax[1]); 2420 2416 2421 // dose distribution unit 2417 // dose distribution unit 2422 char dunit[13]; 2418 char dunit[13]; 2423 ifile.read((char *)dunit, 12); 2419 ifile.read((char *)dunit, 12); 2424 std::string sdunit = dunit; 2420 std::string sdunit = dunit; 2425 setDoseDistUnit(sdunit, ndose); 2421 setDoseDistUnit(sdunit, ndose); 2426 if(DEBUG || kVerbose > 0) { 2422 if(DEBUG || kVerbose > 0) { 2427 G4cout << "Dose dist. unit : " << kDose 2423 G4cout << "Dose dist. unit : " << kDoseUnit << G4endl; 2428 } 2424 } 2429 2425 2430 // dose distribution scaling 2426 // dose distribution scaling 2431 ifile.read((char *)ctmp, 4); // sizeof(fl 2427 ifile.read((char *)ctmp, 4); // sizeof(float) 2432 convertEndian(ctmp, scale); 2428 convertEndian(ctmp, scale); 2433 kDose[ndose].setScale(dscale = scale); 2429 kDose[ndose].setScale(dscale = scale); 2434 2430 2435 double dminmax[2]; 2431 double dminmax[2]; 2436 for(int i = 0; i < 2; i++) dminmax[i] = m 2432 for(int i = 0; i < 2; i++) dminmax[i] = minmax[i]*dscale; 2437 kDose[ndose].setMinMax(dminmax); 2433 kDose[ndose].setMinMax(dminmax); 2438 2434 2439 if(DEBUG || kVerbose > 0) { 2435 if(DEBUG || kVerbose > 0) { 2440 G4cout << "Dose dist. image min., max., 2436 G4cout << "Dose dist. image min., max., scale : " 2441 << dminmax[0] << ", " 2437 << dminmax[0] << ", " 2442 << dminmax[1] << ", " 2438 << dminmax[1] << ", " 2443 << scale << G4endl; 2439 << scale << G4endl; 2444 } 2440 } 2445 2441 2446 // dose distribution image 2442 // dose distribution image 2447 int dsize = size[0]*size[1]; 2443 int dsize = size[0]*size[1]; 2448 if(DEBUG || kVerbose > 0) G4cout << "Dose 2444 if(DEBUG || kVerbose > 0) G4cout << "Dose dist. (" << dsize << "): "; 2449 char * di = new char[dsize*sizeof(short)] 2445 char * di = new char[dsize*sizeof(short)]; 2450 short * shimage = new short[dsize]; 2446 short * shimage = new short[dsize]; 2451 for(int z = 0; z < size[2]; z++) { 2447 for(int z = 0; z < size[2]; z++) { 2452 ifile.read((char *)di, dsize*sizeof(sho 2448 ifile.read((char *)di, dsize*sizeof(short)); 2453 double * dimage = new double[dsize]; 2449 double * dimage = new double[dsize]; 2454 for(int xy = 0; xy < dsize; xy++) { 2450 for(int xy = 0; xy < dsize; xy++) { 2455 convertEndian(di+xy*sizeof(short), shimage[ 2451 convertEndian(di+xy*sizeof(short), shimage[xy]); 2456 dimage[xy] = shimage[xy]*dscale; 2452 dimage[xy] = shimage[xy]*dscale; 2457 } 2453 } 2458 kDose[ndose].addImage(dimage); 2454 kDose[ndose].addImage(dimage); 2459 2455 2460 if(DEBUG || kVerbose > 0) G4cout << "[" 2456 if(DEBUG || kVerbose > 0) G4cout << "[" << z << "]" << dimage[(size_t)(dsize*0.55)] << ", "; 2461 2457 2462 if(DEBUG || kVerbose > 0) { 2458 if(DEBUG || kVerbose > 0) { 2463 for(int j = 0; j < dsize; j++) { 2459 for(int j = 0; j < dsize; j++) { 2464 if(dimage[j] < 0) 2460 if(dimage[j] < 0) 2465 G4cout << "[" << j << "," << z << "]" 2461 G4cout << "[" << j << "," << z << "]" 2466 << dimage[j] << ", "; 2462 << dimage[j] << ", "; 2467 } 2463 } 2468 } 2464 } 2469 } 2465 } 2470 delete [] shimage; 2466 delete [] shimage; 2471 delete [] di; 2467 delete [] di; 2472 if(DEBUG || kVerbose > 0) G4cout << G4end 2468 if(DEBUG || kVerbose > 0) G4cout << G4endl; 2473 2469 2474 ifile.read((char *)ctmp, 3*4); // 3*sizeo 2470 ifile.read((char *)ctmp, 3*4); // 3*sizeof(int) 2475 convertEndian(ctmp, iCenter[0]); 2471 convertEndian(ctmp, iCenter[0]); 2476 convertEndian(ctmp+4, iCenter[1]); 2472 convertEndian(ctmp+4, iCenter[1]); 2477 convertEndian(ctmp+8, iCenter[2]); 2473 convertEndian(ctmp+8, iCenter[2]); 2478 for(int i = 0; i < 3; i++) fCenter[i] = ( 2474 for(int i = 0; i < 3; i++) fCenter[i] = (float)iCenter[i]; 2479 kDose[ndose].setCenterPosition(fCenter); 2475 kDose[ndose].setCenterPosition(fCenter); 2480 2476 2481 if(DEBUG || kVerbose > 0) { 2477 if(DEBUG || kVerbose > 0) { 2482 G4cout << "Dose dist. image relative lo 2478 G4cout << "Dose dist. image relative location : (" 2483 << fCenter[0] << ", " 2479 << fCenter[0] << ", " 2484 << fCenter[1] << ", " 2480 << fCenter[1] << ", " 2485 << fCenter[2] << ")" << G4endl; 2481 << fCenter[2] << ")" << G4endl; 2486 } 2482 } 2487 2483 2488 2484 2489 } 2485 } 2490 2486 2491 //----- ROI image -----// 2487 //----- ROI image -----// 2492 if(kPointerToROIData != 0) { 2488 if(kPointerToROIData != 0) { 2493 2489 2494 newROI(); 2490 newROI(); 2495 2491 2496 // ROI image size 2492 // ROI image size 2497 ifile.read((char *)ctmp, 3*sizeof(int)); 2493 ifile.read((char *)ctmp, 3*sizeof(int)); 2498 convertEndian(ctmp, size[0]); 2494 convertEndian(ctmp, size[0]); 2499 convertEndian(ctmp+sizeof(int), size[1]); 2495 convertEndian(ctmp+sizeof(int), size[1]); 2500 convertEndian(ctmp+2*sizeof(int), size[2] 2496 convertEndian(ctmp+2*sizeof(int), size[2]); 2501 kRoi[0].setSize(size); 2497 kRoi[0].setSize(size); 2502 if(DEBUG || kVerbose > 0) { 2498 if(DEBUG || kVerbose > 0) { 2503 G4cout << "ROI image size : (" 2499 G4cout << "ROI image size : (" 2504 << size[0] << ", " 2500 << size[0] << ", " 2505 << size[1] << ", " 2501 << size[1] << ", " 2506 << size[2] << ")" 2502 << size[2] << ")" 2507 << G4endl; 2503 << G4endl; 2508 } 2504 } 2509 2505 2510 // ROI max. & min. 2506 // ROI max. & min. 2511 ifile.read((char *)ctmp, sizeof(short)*2) 2507 ifile.read((char *)ctmp, sizeof(short)*2); 2512 convertEndian(ctmp, minmax[0]); 2508 convertEndian(ctmp, minmax[0]); 2513 convertEndian(ctmp+sizeof(short), minmax[ 2509 convertEndian(ctmp+sizeof(short), minmax[1]); 2514 kRoi[0].setMinMax(minmax); 2510 kRoi[0].setMinMax(minmax); 2515 2511 2516 // ROI distribution scaling 2512 // ROI distribution scaling 2517 ifile.read((char *)ctmp, sizeof(float)); 2513 ifile.read((char *)ctmp, sizeof(float)); 2518 convertEndian(ctmp, scale); 2514 convertEndian(ctmp, scale); 2519 kRoi[0].setScale(dscale = scale); 2515 kRoi[0].setScale(dscale = scale); 2520 if(DEBUG || kVerbose > 0) { 2516 if(DEBUG || kVerbose > 0) { 2521 G4cout << "ROI image min., max., scale 2517 G4cout << "ROI image min., max., scale : " 2522 << minmax[0] << ", " 2518 << minmax[0] << ", " 2523 << minmax[1] << ", " 2519 << minmax[1] << ", " 2524 << scale << G4endl; 2520 << scale << G4endl; 2525 } 2521 } 2526 2522 2527 // ROI image 2523 // ROI image 2528 int rsize = size[0]*size[1]; 2524 int rsize = size[0]*size[1]; 2529 char * ri = new char[rsize*sizeof(short)] 2525 char * ri = new char[rsize*sizeof(short)]; 2530 for(int i = 0; i < size[2]; i++) { 2526 for(int i = 0; i < size[2]; i++) { 2531 ifile.read((char *)ri, rsize*sizeof(sho 2527 ifile.read((char *)ri, rsize*sizeof(short)); 2532 short * rimage = new short[rsize]; 2528 short * rimage = new short[rsize]; 2533 for(int j = 0; j < rsize; j++) { 2529 for(int j = 0; j < rsize; j++) { 2534 convertEndian(ri+j*sizeof(short), rimage[j] 2530 convertEndian(ri+j*sizeof(short), rimage[j]); 2535 } 2531 } 2536 kRoi[0].addImage(rimage); 2532 kRoi[0].addImage(rimage); 2537 2533 2538 } 2534 } 2539 delete [] ri; 2535 delete [] ri; 2540 2536 2541 // ROI relative location 2537 // ROI relative location 2542 ifile.read((char *)ctmp, 3*sizeof(int)); 2538 ifile.read((char *)ctmp, 3*sizeof(int)); 2543 convertEndian(ctmp, iCenter[0]); 2539 convertEndian(ctmp, iCenter[0]); 2544 convertEndian(ctmp+sizeof(int), iCenter[1 2540 convertEndian(ctmp+sizeof(int), iCenter[1]); 2545 convertEndian(ctmp+2*sizeof(int), iCenter 2541 convertEndian(ctmp+2*sizeof(int), iCenter[2]); 2546 for(int i = 0; i < 3; i++) fCenter[i] = i 2542 for(int i = 0; i < 3; i++) fCenter[i] = iCenter[i]; 2547 kRoi[0].setCenterPosition(fCenter); 2543 kRoi[0].setCenterPosition(fCenter); 2548 if(DEBUG || kVerbose > 0) { 2544 if(DEBUG || kVerbose > 0) { 2549 G4cout << "ROI image relative location 2545 G4cout << "ROI image relative location : (" 2550 << fCenter[0] << ", " 2546 << fCenter[0] << ", " 2551 << fCenter[1] << ", " 2547 << fCenter[1] << ", " 2552 << fCenter[2] << ")" << G4endl; 2548 << fCenter[2] << ")" << G4endl; 2553 } 2549 } 2554 2550 2555 } 2551 } 2556 2552 2557 //----- track information -----// 2553 //----- track information -----// 2558 if(kPointerToTrackData != 0) { 2554 if(kPointerToTrackData != 0) { 2559 2555 2560 // track 2556 // track 2561 ifile.read((char *)ctmp, sizeof(int)); 2557 ifile.read((char *)ctmp, sizeof(int)); 2562 int ntrk; 2558 int ntrk; 2563 convertEndian(ctmp, ntrk); 2559 convertEndian(ctmp, ntrk); 2564 if(DEBUG || kVerbose > 0) { 2560 if(DEBUG || kVerbose > 0) { 2565 G4cout << "# of tracks: " << ntrk << G4 2561 G4cout << "# of tracks: " << ntrk << G4endl; 2566 } 2562 } 2567 2563 2568 // v4 2564 // v4 2569 std::vector<float *> trkv4; 2565 std::vector<float *> trkv4; 2570 2566 2571 // track position 2567 // track position 2572 for(int i = 0; i < ntrk; i++) { 2568 for(int i = 0; i < ntrk; i++) { 2573 float * tp = new float[6]; 2569 float * tp = new float[6]; 2574 2570 2575 ifile.read((char *)ctmp, sizeof(float)* 2571 ifile.read((char *)ctmp, sizeof(float)*3); 2576 if(DEBUG || kVerbose > 0) if(i < 10) G4 2572 if(DEBUG || kVerbose > 0) if(i < 10) G4cout << i << ": " ; 2577 for(int j = 0; j < 3; j++) { 2573 for(int j = 0; j < 3; j++) { 2578 convertEndian(ctmp+j*sizeof(float), tp[j]); 2574 convertEndian(ctmp+j*sizeof(float), tp[j]); 2579 if(DEBUG || kVerbose > 0) if(i < 10) G4cout 2575 if(DEBUG || kVerbose > 0) if(i < 10) G4cout << tp[j] << ", "; 2580 } 2576 } 2581 2577 2582 ifile.read((char *)ctmp, sizeof(float)* 2578 ifile.read((char *)ctmp, sizeof(float)*3); 2583 for(int j = 0; j < 3; j++) { 2579 for(int j = 0; j < 3; j++) { 2584 convertEndian(ctmp+j*sizeof(float), tp[j+3] 2580 convertEndian(ctmp+j*sizeof(float), tp[j+3]); 2585 if(DEBUG || kVerbose > 0) if(i < 10) G4cout 2581 if(DEBUG || kVerbose > 0) if(i < 10) G4cout << tp[j+3] << ", "; 2586 } 2582 } 2587 addTrack(tp); 2583 addTrack(tp); 2588 if(DEBUG || kVerbose > 0) if(i < 10) G4 2584 if(DEBUG || kVerbose > 0) if(i < 10) G4cout << G4endl; 2589 2585 2590 // v4 2586 // v4 2591 trkv4.push_back(tp); 2587 trkv4.push_back(tp); 2592 } 2588 } 2593 2589 2594 //v4 2590 //v4 2595 unsigned char trkcolorv4[3]; 2591 unsigned char trkcolorv4[3]; 2596 2592 2597 // track color 2593 // track color 2598 for(int i = 0; i < ntrk; i++) { 2594 for(int i = 0; i < ntrk; i++) { 2599 unsigned char * rgb = new unsigned char 2595 unsigned char * rgb = new unsigned char[3]; 2600 ifile.read((char *)rgb, 3); 2596 ifile.read((char *)rgb, 3); 2601 addTrackColor(rgb); 2597 addTrackColor(rgb); 2602 2598 2603 // v4 2599 // v4 2604 for(int j = 0; j < 3; j++) trkcolorv4[j 2600 for(int j = 0; j < 3; j++) trkcolorv4[j] = rgb[j]; 2605 std::vector<float *> trk; 2601 std::vector<float *> trk; 2606 trk.push_back(trkv4[i]); 2602 trk.push_back(trkv4[i]); 2607 addTrack(trk, trkcolorv4); 2603 addTrack(trk, trkcolorv4); 2608 2604 2609 } 2605 } 2610 2606 2611 } 2607 } 2612 2608 2613 ifile.close(); 2609 ifile.close(); 2614 2610 2615 return true; 2611 return true; 2616 } 2612 } 2617 bool G4GMocrenIO::retrieveData3(char * _filen 2613 bool G4GMocrenIO::retrieveData3(char * _filename) { 2618 kFileName = _filename; 2614 kFileName = _filename; 2619 return retrieveData(); 2615 return retrieveData(); 2620 } 2616 } 2621 2617 2622 // 2618 // 2623 bool G4GMocrenIO::retrieveData2() { 2619 bool G4GMocrenIO::retrieveData2() { 2624 2620 2625 bool DEBUG = false;// 2621 bool DEBUG = false;// 2626 2622 2627 // input file open 2623 // input file open 2628 std::ifstream ifile(kFileName.c_str(), std: 2624 std::ifstream ifile(kFileName.c_str(), std::ios_base::in|std::ios_base::binary); 2629 if(!ifile) { 2625 if(!ifile) { 2630 if (G4VisManager::GetVerbosity() >= G4Vis 2626 if (G4VisManager::GetVerbosity() >= G4VisManager::errors) 2631 G4cout << "Cannot open file: " << kFile 2627 G4cout << "Cannot open file: " << kFileName 2632 << " in G4GMocrenIO::retrieveData2()." << 2628 << " in G4GMocrenIO::retrieveData2()." << G4endl; 2633 return false; 2629 return false; 2634 } 2630 } 2635 2631 2636 // data buffer 2632 // data buffer 2637 char ctmp[12]; 2633 char ctmp[12]; 2638 2634 2639 // file identifier 2635 // file identifier 2640 char verid[9]; 2636 char verid[9]; 2641 ifile.read((char *)verid, 8); 2637 ifile.read((char *)verid, 8); 2642 2638 2643 // file version 2639 // file version 2644 unsigned char ver; 2640 unsigned char ver; 2645 ifile.read((char *)&ver, 1); 2641 ifile.read((char *)&ver, 1); 2646 std::stringstream ss; 2642 std::stringstream ss; 2647 ss << (int)ver; 2643 ss << (int)ver; 2648 kVersion = ss.str(); 2644 kVersion = ss.str(); 2649 if(DEBUG || kVerbose > 0) G4cout << "File v 2645 if(DEBUG || kVerbose > 0) G4cout << "File version : " << kVersion << G4endl; 2650 2646 2651 // id of version 1 2647 // id of version 1 2652 char idtmp[IDLENGTH]; 2648 char idtmp[IDLENGTH]; 2653 ifile.read((char *)idtmp, IDLENGTH); 2649 ifile.read((char *)idtmp, IDLENGTH); 2654 kId = idtmp; 2650 kId = idtmp; 2655 // version of version 1 2651 // version of version 1 2656 char vertmp[VERLENGTH]; 2652 char vertmp[VERLENGTH]; 2657 ifile.read((char *)vertmp, VERLENGTH); 2653 ifile.read((char *)vertmp, VERLENGTH); 2658 2654 2659 // endian 2655 // endian 2660 ifile.read((char *)&kLittleEndianInput, siz 2656 ifile.read((char *)&kLittleEndianInput, sizeof(char)); 2661 if(DEBUG || kVerbose > 0) { 2657 if(DEBUG || kVerbose > 0) { 2662 G4cout << "Endian : "; 2658 G4cout << "Endian : "; 2663 if(kLittleEndianInput == 1) 2659 if(kLittleEndianInput == 1) 2664 G4cout << " little" << G4endl; 2660 G4cout << " little" << G4endl; 2665 else { 2661 else { 2666 G4cout << " big" << G4endl; 2662 G4cout << " big" << G4endl; 2667 } 2663 } 2668 } 2664 } 2669 2665 2670 // voxel spacings for all images 2666 // voxel spacings for all images 2671 ifile.read((char *)ctmp, 12); 2667 ifile.read((char *)ctmp, 12); 2672 convertEndian(ctmp, kVoxelSpacing[0]); 2668 convertEndian(ctmp, kVoxelSpacing[0]); 2673 convertEndian(ctmp+4, kVoxelSpacing[1]); 2669 convertEndian(ctmp+4, kVoxelSpacing[1]); 2674 convertEndian(ctmp+8, kVoxelSpacing[2]); 2670 convertEndian(ctmp+8, kVoxelSpacing[2]); 2675 if(DEBUG || kVerbose > 0) { 2671 if(DEBUG || kVerbose > 0) { 2676 G4cout << "Voxel spacing : (" 2672 G4cout << "Voxel spacing : (" 2677 << kVoxelSpacing[0] << ", " 2673 << kVoxelSpacing[0] << ", " 2678 << kVoxelSpacing[1] << ", " 2674 << kVoxelSpacing[1] << ", " 2679 << kVoxelSpacing[2] 2675 << kVoxelSpacing[2] 2680 << ") mm " << G4endl; 2676 << ") mm " << G4endl; 2681 } 2677 } 2682 2678 2683 2679 2684 // offset from file starting point to the m 2680 // offset from file starting point to the modality image data 2685 ifile.read((char *)ctmp, 4); 2681 ifile.read((char *)ctmp, 4); 2686 convertEndian(ctmp, kPointerToModalityData) 2682 convertEndian(ctmp, kPointerToModalityData); 2687 2683 2688 // offset from file starting point to the d 2684 // offset from file starting point to the dose image data 2689 unsigned int ptddd; 2685 unsigned int ptddd; 2690 ifile.read((char *)ctmp, 4); 2686 ifile.read((char *)ctmp, 4); 2691 convertEndian(ctmp, ptddd); 2687 convertEndian(ctmp, ptddd); 2692 kPointerToDoseDistData.push_back(ptddd); 2688 kPointerToDoseDistData.push_back(ptddd); 2693 2689 2694 // offset from file starting point to the R 2690 // offset from file starting point to the ROI image data 2695 ifile.read((char *)ctmp, 4); 2691 ifile.read((char *)ctmp, 4); 2696 convertEndian(ctmp, kPointerToROIData); 2692 convertEndian(ctmp, kPointerToROIData); 2697 2693 2698 // offset from file starting point to the t 2694 // offset from file starting point to the track data 2699 ifile.read((char *)ctmp, 4); 2695 ifile.read((char *)ctmp, 4); 2700 convertEndian(ctmp, kPointerToTrackData); 2696 convertEndian(ctmp, kPointerToTrackData); 2701 if(DEBUG || kVerbose > 0) { 2697 if(DEBUG || kVerbose > 0) { 2702 G4cout << "Each pointer to data : " 2698 G4cout << "Each pointer to data : " 2703 << kPointerToModalityData << ", " 2699 << kPointerToModalityData << ", " 2704 << kPointerToDoseDistData[0] << ", " 2700 << kPointerToDoseDistData[0] << ", " 2705 << kPointerToROIData << ", " 2701 << kPointerToROIData << ", " 2706 << kPointerToTrackData << G4endl; 2702 << kPointerToTrackData << G4endl; 2707 } 2703 } 2708 2704 2709 if(kPointerToModalityData == 0 && kPointerT 2705 if(kPointerToModalityData == 0 && kPointerToDoseDistData.size() == 0 && 2710 kPointerToROIData == 0 && kPointerToTrac 2706 kPointerToROIData == 0 && kPointerToTrackData == 0) { 2711 if(DEBUG || kVerbose > 0) { 2707 if(DEBUG || kVerbose > 0) { 2712 G4cout << "No data." << G4endl; 2708 G4cout << "No data." << G4endl; 2713 } 2709 } 2714 return false; 2710 return false; 2715 } 2711 } 2716 2712 2717 // event number 2713 // event number 2718 /* ver 1 2714 /* ver 1 2719 ifile.read(ctmp, sizeof(int)); 2715 ifile.read(ctmp, sizeof(int)); 2720 convertEndian(ctmp, numberOfEvents); 2716 convertEndian(ctmp, numberOfEvents); 2721 */ 2717 */ 2722 2718 2723 int size[3]; 2719 int size[3]; 2724 float scale; 2720 float scale; 2725 double dscale; 2721 double dscale; 2726 short minmax[2]; 2722 short minmax[2]; 2727 float fCenter[3]; 2723 float fCenter[3]; 2728 int iCenter[3]; 2724 int iCenter[3]; 2729 2725 2730 //----- Modality image -----// 2726 //----- Modality image -----// 2731 // modality image size 2727 // modality image size 2732 ifile.read(ctmp, 3*sizeof(int)); 2728 ifile.read(ctmp, 3*sizeof(int)); 2733 convertEndian(ctmp, size[0]); 2729 convertEndian(ctmp, size[0]); 2734 convertEndian(ctmp+sizeof(int), size[1]); 2730 convertEndian(ctmp+sizeof(int), size[1]); 2735 convertEndian(ctmp+2*sizeof(int), size[2]); 2731 convertEndian(ctmp+2*sizeof(int), size[2]); 2736 if(DEBUG || kVerbose > 0) { 2732 if(DEBUG || kVerbose > 0) { 2737 G4cout << "Modality image size : (" 2733 G4cout << "Modality image size : (" 2738 << size[0] << ", " 2734 << size[0] << ", " 2739 << size[1] << ", " 2735 << size[1] << ", " 2740 << size[2] << ")" 2736 << size[2] << ")" 2741 << G4endl; 2737 << G4endl; 2742 } 2738 } 2743 kModality.setSize(size); 2739 kModality.setSize(size); 2744 2740 2745 // modality image voxel spacing 2741 // modality image voxel spacing 2746 /* 2742 /* 2747 ifile.read(ctmp, 3*sizeof(float)); 2743 ifile.read(ctmp, 3*sizeof(float)); 2748 convertEndian(ctmp, modalityImageVoxelSpa 2744 convertEndian(ctmp, modalityImageVoxelSpacing[0]); 2749 convertEndian(ctmp+sizeof(float), modalit 2745 convertEndian(ctmp+sizeof(float), modalityImageVoxelSpacing[1]); 2750 convertEndian(ctmp+2*sizeof(float), modal 2746 convertEndian(ctmp+2*sizeof(float), modalityImageVoxelSpacing[2]); 2751 */ 2747 */ 2752 2748 2753 if(kPointerToModalityData != 0) { 2749 if(kPointerToModalityData != 0) { 2754 2750 2755 // modality density max. & min. 2751 // modality density max. & min. 2756 ifile.read((char *)ctmp, 4); 2752 ifile.read((char *)ctmp, 4); 2757 convertEndian(ctmp, minmax[0]); 2753 convertEndian(ctmp, minmax[0]); 2758 convertEndian(ctmp+2, minmax[1]); 2754 convertEndian(ctmp+2, minmax[1]); 2759 kModality.setMinMax(minmax); 2755 kModality.setMinMax(minmax); 2760 2756 2761 // modality density scale 2757 // modality density scale 2762 ifile.read((char *)ctmp, 4); 2758 ifile.read((char *)ctmp, 4); 2763 convertEndian(ctmp, scale); 2759 convertEndian(ctmp, scale); 2764 kModality.setScale(dscale = scale); 2760 kModality.setScale(dscale = scale); 2765 if(DEBUG || kVerbose > 0) { 2761 if(DEBUG || kVerbose > 0) { 2766 G4cout << "Modality image min., max., s 2762 G4cout << "Modality image min., max., scale : " 2767 << minmax[0] << ", " 2763 << minmax[0] << ", " 2768 << minmax[1] << ", " 2764 << minmax[1] << ", " 2769 << scale << G4endl; 2765 << scale << G4endl; 2770 } 2766 } 2771 2767 2772 // modality density 2768 // modality density 2773 int psize = size[0]*size[1]; 2769 int psize = size[0]*size[1]; 2774 if(DEBUG || kVerbose > 0) G4cout << "Moda 2770 if(DEBUG || kVerbose > 0) G4cout << "Modality image (" << psize << "): "; 2775 char * cimage = new char[psize*sizeof(sho 2771 char * cimage = new char[psize*sizeof(short)]; 2776 for(int i = 0; i < size[2]; i++) { 2772 for(int i = 0; i < size[2]; i++) { 2777 ifile.read((char *)cimage, psize*sizeof 2773 ifile.read((char *)cimage, psize*sizeof(short)); 2778 short * mimage = new short[psize]; 2774 short * mimage = new short[psize]; 2779 for(int j = 0; j < psize; j++) { 2775 for(int j = 0; j < psize; j++) { 2780 convertEndian(cimage+j*sizeof(short), mimag 2776 convertEndian(cimage+j*sizeof(short), mimage[j]); 2781 } 2777 } 2782 kModality.addImage(mimage); 2778 kModality.addImage(mimage); 2783 2779 2784 if(DEBUG || kVerbose > 0) G4cout << "[" 2780 if(DEBUG || kVerbose > 0) G4cout << "[" << i << "]" << mimage[(size_t)(psize*0.55)] << ", "; 2785 } 2781 } 2786 if(DEBUG || kVerbose > 0) G4cout << G4end 2782 if(DEBUG || kVerbose > 0) G4cout << G4endl; 2787 delete [] cimage; 2783 delete [] cimage; 2788 2784 2789 // modality desity map for CT value 2785 // modality desity map for CT value 2790 size_t msize = minmax[1]-minmax[0]+1; 2786 size_t msize = minmax[1]-minmax[0]+1; 2791 if(DEBUG || kVerbose > 0) G4cout << "msiz 2787 if(DEBUG || kVerbose > 0) G4cout << "msize: " << msize << G4endl; 2792 char * pdmap = new char[msize*sizeof(floa 2788 char * pdmap = new char[msize*sizeof(float)]; 2793 ifile.read((char *)pdmap, msize*sizeof(fl 2789 ifile.read((char *)pdmap, msize*sizeof(float)); 2794 float ftmp; 2790 float ftmp; 2795 for(int i = 0; i < (int)msize; i++) { 2791 for(int i = 0; i < (int)msize; i++) { 2796 convertEndian(pdmap+i*sizeof(float), ft 2792 convertEndian(pdmap+i*sizeof(float), ftmp); 2797 kModalityImageDensityMap.push_back(ftmp 2793 kModalityImageDensityMap.push_back(ftmp); 2798 } 2794 } 2799 delete [] pdmap; << 2800 if(DEBUG || kVerbose > 0) { 2795 if(DEBUG || kVerbose > 0) { 2801 G4cout << "density map : " << std::ends 2796 G4cout << "density map : " << std::ends; 2802 for(int i = 0; i < 10; i++) 2797 for(int i = 0; i < 10; i++) 2803 G4cout <<kModalityImageDensityMap[i] << ", 2798 G4cout <<kModalityImageDensityMap[i] << ", "; 2804 G4cout << G4endl; 2799 G4cout << G4endl; 2805 for(int i = 0; i < 10; i++) G4cout << " 2800 for(int i = 0; i < 10; i++) G4cout << ".."; 2806 G4cout << G4endl; 2801 G4cout << G4endl; 2807 for(size_t i =kModalityImageDensityMap. 2802 for(size_t i =kModalityImageDensityMap.size() - 10; i <kModalityImageDensityMap.size(); i++) 2808 G4cout <<kModalityImageDensityMap[i] << ", 2803 G4cout <<kModalityImageDensityMap[i] << ", "; 2809 G4cout << G4endl; 2804 G4cout << G4endl; 2810 } 2805 } 2811 2806 2812 } 2807 } 2813 2808 2814 2809 2815 //----- dose distribution image -----// 2810 //----- dose distribution image -----// 2816 if(kPointerToDoseDistData[0] != 0) { 2811 if(kPointerToDoseDistData[0] != 0) { 2817 2812 2818 newDoseDist(); 2813 newDoseDist(); 2819 2814 2820 // dose distrbution image size 2815 // dose distrbution image size 2821 ifile.read((char *)ctmp, 3*sizeof(int)); 2816 ifile.read((char *)ctmp, 3*sizeof(int)); 2822 convertEndian(ctmp, size[0]); 2817 convertEndian(ctmp, size[0]); 2823 convertEndian(ctmp+sizeof(int), size[1]); 2818 convertEndian(ctmp+sizeof(int), size[1]); 2824 convertEndian(ctmp+2*sizeof(int), size[2] 2819 convertEndian(ctmp+2*sizeof(int), size[2]); 2825 if(DEBUG || kVerbose > 0) { 2820 if(DEBUG || kVerbose > 0) { 2826 G4cout << "Dose dist. image size : (" 2821 G4cout << "Dose dist. image size : (" 2827 << size[0] << ", " 2822 << size[0] << ", " 2828 << size[1] << ", " 2823 << size[1] << ", " 2829 << size[2] << ")" 2824 << size[2] << ")" 2830 << G4endl; 2825 << G4endl; 2831 } 2826 } 2832 kDose[0].setSize(size); 2827 kDose[0].setSize(size); 2833 2828 2834 // dose distribution max. & min. 2829 // dose distribution max. & min. 2835 ifile.read((char *)ctmp, sizeof(short)*2) 2830 ifile.read((char *)ctmp, sizeof(short)*2); 2836 convertEndian(ctmp, minmax[0]); 2831 convertEndian(ctmp, minmax[0]); 2837 convertEndian(ctmp+2, minmax[1]); 2832 convertEndian(ctmp+2, minmax[1]); 2838 // dose distribution scaling 2833 // dose distribution scaling 2839 ifile.read((char *)ctmp, sizeof(float)); 2834 ifile.read((char *)ctmp, sizeof(float)); 2840 convertEndian(ctmp, scale); 2835 convertEndian(ctmp, scale); 2841 kDose[0].setScale(dscale = scale); 2836 kDose[0].setScale(dscale = scale); 2842 2837 2843 double dminmax[2]; 2838 double dminmax[2]; 2844 for(int i = 0; i < 2; i++) dminmax[i] = m 2839 for(int i = 0; i < 2; i++) dminmax[i] = minmax[i]*dscale; 2845 kDose[0].setMinMax(dminmax); 2840 kDose[0].setMinMax(dminmax); 2846 2841 2847 if(DEBUG || kVerbose > 0) { 2842 if(DEBUG || kVerbose > 0) { 2848 G4cout << "Dose dist. image min., max., 2843 G4cout << "Dose dist. image min., max., scale : " 2849 << dminmax[0] << ", " 2844 << dminmax[0] << ", " 2850 << dminmax[1] << ", " 2845 << dminmax[1] << ", " 2851 << scale << G4endl; 2846 << scale << G4endl; 2852 } 2847 } 2853 2848 2854 // dose distribution image 2849 // dose distribution image 2855 int dsize = size[0]*size[1]; 2850 int dsize = size[0]*size[1]; 2856 if(DEBUG || kVerbose > 0) G4cout << "Dose 2851 if(DEBUG || kVerbose > 0) G4cout << "Dose dist. (" << dsize << "): "; 2857 char * di = new char[dsize*sizeof(short)] 2852 char * di = new char[dsize*sizeof(short)]; 2858 short * shimage = new short[dsize]; 2853 short * shimage = new short[dsize]; 2859 for(int z = 0; z < size[2]; z++) { 2854 for(int z = 0; z < size[2]; z++) { 2860 ifile.read((char *)di, dsize*sizeof(sho 2855 ifile.read((char *)di, dsize*sizeof(short)); 2861 double * dimage = new double[dsize]; 2856 double * dimage = new double[dsize]; 2862 for(int xy = 0; xy < dsize; xy++) { 2857 for(int xy = 0; xy < dsize; xy++) { 2863 convertEndian(di+xy*sizeof(short), shimage[ 2858 convertEndian(di+xy*sizeof(short), shimage[xy]); 2864 dimage[xy] = shimage[xy]*dscale; 2859 dimage[xy] = shimage[xy]*dscale; 2865 } 2860 } 2866 kDose[0].addImage(dimage); 2861 kDose[0].addImage(dimage); 2867 2862 2868 if(DEBUG || kVerbose > 0) G4cout << "[" 2863 if(DEBUG || kVerbose > 0) G4cout << "[" << z << "]" << dimage[(size_t)(dsize*0.55)] << ", "; 2869 2864 2870 if(DEBUG || kVerbose > 0) { 2865 if(DEBUG || kVerbose > 0) { 2871 for(int j = 0; j < dsize; j++) { 2866 for(int j = 0; j < dsize; j++) { 2872 if(dimage[j] < 0) 2867 if(dimage[j] < 0) 2873 G4cout << "[" << j << "," << z << "]" 2868 G4cout << "[" << j << "," << z << "]" 2874 << dimage[j] << ", "; 2869 << dimage[j] << ", "; 2875 } 2870 } 2876 } 2871 } 2877 } 2872 } 2878 delete [] shimage; 2873 delete [] shimage; 2879 delete [] di; 2874 delete [] di; 2880 if(DEBUG || kVerbose > 0) G4cout << G4end 2875 if(DEBUG || kVerbose > 0) G4cout << G4endl; 2881 2876 2882 /* ver 1 2877 /* ver 1 2883 float doseDist; 2878 float doseDist; 2884 int dosePid; 2879 int dosePid; 2885 double * doseData = new double[numDose 2880 double * doseData = new double[numDoseImageVoxels]; 2886 for(int i = 0; i < numDose; i++) { 2881 for(int i = 0; i < numDose; i++) { 2887 ifile.read(ctmp, sizeof(int)); 2882 ifile.read(ctmp, sizeof(int)); 2888 convertEndian(ctmp, dosePid); 2883 convertEndian(ctmp, dosePid); 2889 for(int j = 0; j < numDoseImageVoxels; 2884 for(int j = 0; j < numDoseImageVoxels; j++) { 2890 ifile.read(ctmp, sizeof(float)); 2885 ifile.read(ctmp, sizeof(float)); 2891 convertEndian(ctmp, doseDist); 2886 convertEndian(ctmp, doseDist); 2892 doseData[j] = doseDist; 2887 doseData[j] = doseDist; 2893 } 2888 } 2894 setDose(dosePid, doseData); 2889 setDose(dosePid, doseData); 2895 } 2890 } 2896 delete [] doseData; 2891 delete [] doseData; 2897 if(totalDose == NULL) totalDose = new 2892 if(totalDose == NULL) totalDose = new double[numDoseImageVoxels]; 2898 for(int i = 0; i < numDoseImageVoxels; 2893 for(int i = 0; i < numDoseImageVoxels; i++) { 2899 ifile.read(ctmp, sizeof(float)); 2894 ifile.read(ctmp, sizeof(float)); 2900 convertEndian(ctmp, doseDist); 2895 convertEndian(ctmp, doseDist); 2901 totalDose[i] = doseDist; 2896 totalDose[i] = doseDist; 2902 } 2897 } 2903 */ 2898 */ 2904 2899 2905 /* ver 1 2900 /* ver 1 2906 // relative location between the two imag 2901 // relative location between the two images 2907 ifile.read(ctmp, 3*sizeof(float)); 2902 ifile.read(ctmp, 3*sizeof(float)); 2908 convertEndian(ctmp, relativeLocation[0]); 2903 convertEndian(ctmp, relativeLocation[0]); 2909 convertEndian(ctmp+sizeof(float), relativ 2904 convertEndian(ctmp+sizeof(float), relativeLocation[1]); 2910 convertEndian(ctmp+2*sizeof(float), relat 2905 convertEndian(ctmp+2*sizeof(float), relativeLocation[2]); 2911 */ 2906 */ 2912 2907 2913 // relative location of the dose distribu 2908 // relative location of the dose distribution image for 2914 // the modality image 2909 // the modality image 2915 //ofile.write((char *)relativeLocation, 3 2910 //ofile.write((char *)relativeLocation, 3*sizeof(float)); 2916 ifile.read((char *)ctmp, 3*sizeof(int)); 2911 ifile.read((char *)ctmp, 3*sizeof(int)); 2917 convertEndian(ctmp, iCenter[0]); 2912 convertEndian(ctmp, iCenter[0]); 2918 convertEndian(ctmp+sizeof(int), iCenter[1 2913 convertEndian(ctmp+sizeof(int), iCenter[1]); 2919 convertEndian(ctmp+2*sizeof(int), iCenter 2914 convertEndian(ctmp+2*sizeof(int), iCenter[2]); 2920 for(int i = 0; i < 3; i++) fCenter[i] = ( 2915 for(int i = 0; i < 3; i++) fCenter[i] = (float)iCenter[i]; 2921 kDose[0].setCenterPosition(fCenter); 2916 kDose[0].setCenterPosition(fCenter); 2922 2917 2923 if(DEBUG || kVerbose > 0) { 2918 if(DEBUG || kVerbose > 0) { 2924 G4cout << "Dose dist. image relative lo 2919 G4cout << "Dose dist. image relative location : (" 2925 << fCenter[0] << ", " 2920 << fCenter[0] << ", " 2926 << fCenter[1] << ", " 2921 << fCenter[1] << ", " 2927 << fCenter[2] << ")" << G4endl; 2922 << fCenter[2] << ")" << G4endl; 2928 } 2923 } 2929 2924 2930 2925 2931 } 2926 } 2932 2927 2933 //----- ROI image -----// 2928 //----- ROI image -----// 2934 if(kPointerToROIData != 0) { 2929 if(kPointerToROIData != 0) { 2935 2930 2936 newROI(); 2931 newROI(); 2937 2932 2938 // ROI image size 2933 // ROI image size 2939 ifile.read((char *)ctmp, 3*sizeof(int)); 2934 ifile.read((char *)ctmp, 3*sizeof(int)); 2940 convertEndian(ctmp, size[0]); 2935 convertEndian(ctmp, size[0]); 2941 convertEndian(ctmp+sizeof(int), size[1]); 2936 convertEndian(ctmp+sizeof(int), size[1]); 2942 convertEndian(ctmp+2*sizeof(int), size[2] 2937 convertEndian(ctmp+2*sizeof(int), size[2]); 2943 kRoi[0].setSize(size); 2938 kRoi[0].setSize(size); 2944 if(DEBUG || kVerbose > 0) { 2939 if(DEBUG || kVerbose > 0) { 2945 G4cout << "ROI image size : (" 2940 G4cout << "ROI image size : (" 2946 << size[0] << ", " 2941 << size[0] << ", " 2947 << size[1] << ", " 2942 << size[1] << ", " 2948 << size[2] << ")" 2943 << size[2] << ")" 2949 << G4endl; 2944 << G4endl; 2950 } 2945 } 2951 2946 2952 // ROI max. & min. 2947 // ROI max. & min. 2953 ifile.read((char *)ctmp, sizeof(short)*2) 2948 ifile.read((char *)ctmp, sizeof(short)*2); 2954 convertEndian(ctmp, minmax[0]); 2949 convertEndian(ctmp, minmax[0]); 2955 convertEndian(ctmp+sizeof(short), minmax[ 2950 convertEndian(ctmp+sizeof(short), minmax[1]); 2956 kRoi[0].setMinMax(minmax); 2951 kRoi[0].setMinMax(minmax); 2957 2952 2958 // ROI distribution scaling 2953 // ROI distribution scaling 2959 ifile.read((char *)ctmp, sizeof(float)); 2954 ifile.read((char *)ctmp, sizeof(float)); 2960 convertEndian(ctmp, scale); 2955 convertEndian(ctmp, scale); 2961 kRoi[0].setScale(dscale = scale); 2956 kRoi[0].setScale(dscale = scale); 2962 if(DEBUG || kVerbose > 0) { 2957 if(DEBUG || kVerbose > 0) { 2963 G4cout << "ROI image min., max., scale 2958 G4cout << "ROI image min., max., scale : " 2964 << minmax[0] << ", " 2959 << minmax[0] << ", " 2965 << minmax[1] << ", " 2960 << minmax[1] << ", " 2966 << scale << G4endl; 2961 << scale << G4endl; 2967 } 2962 } 2968 2963 2969 // ROI image 2964 // ROI image 2970 int rsize = size[0]*size[1]; 2965 int rsize = size[0]*size[1]; 2971 char * ri = new char[rsize*sizeof(short)] 2966 char * ri = new char[rsize*sizeof(short)]; 2972 for(int i = 0; i < size[2]; i++) { 2967 for(int i = 0; i < size[2]; i++) { 2973 ifile.read((char *)ri, rsize*sizeof(sho 2968 ifile.read((char *)ri, rsize*sizeof(short)); 2974 short * rimage = new short[rsize]; 2969 short * rimage = new short[rsize]; 2975 for(int j = 0; j < rsize; j++) { 2970 for(int j = 0; j < rsize; j++) { 2976 convertEndian(ri+j*sizeof(short), rimage[j] 2971 convertEndian(ri+j*sizeof(short), rimage[j]); 2977 } 2972 } 2978 kRoi[0].addImage(rimage); 2973 kRoi[0].addImage(rimage); 2979 2974 2980 } 2975 } 2981 delete [] ri; 2976 delete [] ri; 2982 2977 2983 // ROI relative location 2978 // ROI relative location 2984 ifile.read((char *)ctmp, 3*sizeof(int)); 2979 ifile.read((char *)ctmp, 3*sizeof(int)); 2985 convertEndian(ctmp, iCenter[0]); 2980 convertEndian(ctmp, iCenter[0]); 2986 convertEndian(ctmp+sizeof(int), iCenter[1 2981 convertEndian(ctmp+sizeof(int), iCenter[1]); 2987 convertEndian(ctmp+2*sizeof(int), iCenter 2982 convertEndian(ctmp+2*sizeof(int), iCenter[2]); 2988 for(int i = 0; i < 3; i++) fCenter[i] = i 2983 for(int i = 0; i < 3; i++) fCenter[i] = iCenter[i]; 2989 kRoi[0].setCenterPosition(fCenter); 2984 kRoi[0].setCenterPosition(fCenter); 2990 if(DEBUG || kVerbose > 0) { 2985 if(DEBUG || kVerbose > 0) { 2991 G4cout << "ROI image relative location 2986 G4cout << "ROI image relative location : (" 2992 << fCenter[0] << ", " 2987 << fCenter[0] << ", " 2993 << fCenter[1] << ", " 2988 << fCenter[1] << ", " 2994 << fCenter[2] << ")" << G4endl; 2989 << fCenter[2] << ")" << G4endl; 2995 } 2990 } 2996 2991 2997 } 2992 } 2998 2993 2999 //----- track information -----// 2994 //----- track information -----// 3000 if(kPointerToTrackData != 0) { 2995 if(kPointerToTrackData != 0) { 3001 2996 3002 // track 2997 // track 3003 ifile.read((char *)ctmp, sizeof(int)); 2998 ifile.read((char *)ctmp, sizeof(int)); 3004 int ntrk; 2999 int ntrk; 3005 convertEndian(ctmp, ntrk); 3000 convertEndian(ctmp, ntrk); 3006 if(DEBUG || kVerbose > 0) { 3001 if(DEBUG || kVerbose > 0) { 3007 G4cout << "# of tracks: " << ntrk << G4 3002 G4cout << "# of tracks: " << ntrk << G4endl; 3008 } 3003 } 3009 3004 3010 //v4 3005 //v4 3011 unsigned char trkcolorv4[3] = {255, 0, 0} 3006 unsigned char trkcolorv4[3] = {255, 0, 0}; 3012 3007 3013 for(int i = 0; i < ntrk; i++) { 3008 for(int i = 0; i < ntrk; i++) { 3014 float * tp = new float[6]; 3009 float * tp = new float[6]; 3015 // v4 3010 // v4 3016 std::vector<float *> trkv4; 3011 std::vector<float *> trkv4; 3017 3012 3018 ifile.read((char *)ctmp, sizeof(float)* 3013 ifile.read((char *)ctmp, sizeof(float)*3); 3019 if(DEBUG || kVerbose > 0) if(i < 10) G4 3014 if(DEBUG || kVerbose > 0) if(i < 10) G4cout << i << ": " ; 3020 for(int j = 0; j < 3; j++) { 3015 for(int j = 0; j < 3; j++) { 3021 convertEndian(ctmp+j*sizeof(float), tp[j]); 3016 convertEndian(ctmp+j*sizeof(float), tp[j]); 3022 if(DEBUG || kVerbose > 0) if(i < 10) G4cout 3017 if(DEBUG || kVerbose > 0) if(i < 10) G4cout << tp[j] << ", "; 3023 } 3018 } 3024 3019 3025 ifile.read((char *)ctmp, sizeof(float)* 3020 ifile.read((char *)ctmp, sizeof(float)*3); 3026 for(int j = 0; j < 3; j++) { 3021 for(int j = 0; j < 3; j++) { 3027 convertEndian(ctmp+j*sizeof(float), tp[j+3] 3022 convertEndian(ctmp+j*sizeof(float), tp[j+3]); 3028 if(DEBUG || kVerbose > 0) if(i < 10) G4cout 3023 if(DEBUG || kVerbose > 0) if(i < 10) G4cout << tp[j+3] << ", "; 3029 } 3024 } 3030 3025 3031 kSteps.push_back(tp); 3026 kSteps.push_back(tp); 3032 // v4 3027 // v4 3033 trkv4.push_back(tp); 3028 trkv4.push_back(tp); 3034 addTrack(trkv4, trkcolorv4); 3029 addTrack(trkv4, trkcolorv4); 3035 3030 3036 if(DEBUG || kVerbose > 0) if(i < 10) G4 3031 if(DEBUG || kVerbose > 0) if(i < 10) G4cout << G4endl; 3037 } 3032 } 3038 3033 3039 } 3034 } 3040 3035 3041 /* ver 1 3036 /* ver 1 3042 // track 3037 // track 3043 int ntracks; 3038 int ntracks; 3044 ifile.read(ctmp, sizeof(int)); 3039 ifile.read(ctmp, sizeof(int)); 3045 convertEndian(ctmp, ntracks); 3040 convertEndian(ctmp, ntracks); 3046 // track displacement 3041 // track displacement 3047 ifile.read(ctmp, 3*sizeof(float)); 3042 ifile.read(ctmp, 3*sizeof(float)); 3048 convertEndian(ctmp, trackDisplacement[0]); 3043 convertEndian(ctmp, trackDisplacement[0]); 3049 convertEndian(ctmp+sizeof(float), trackDisp 3044 convertEndian(ctmp+sizeof(float), trackDisplacement[2]); // exchanged with [1] 3050 convertEndian(ctmp+2*sizeof(float), trackDi 3045 convertEndian(ctmp+2*sizeof(float), trackDisplacement[1]); 3051 // 3046 // 3052 //for(int i = 0; i < ntracks && i < 100; i+ 3047 //for(int i = 0; i < ntracks && i < 100; i++) { 3053 for(int i = 0; i < ntracks; i++) { 3048 for(int i = 0; i < ntracks; i++) { 3054 DicomDoseTrack trk; 3049 DicomDoseTrack trk; 3055 short trackid, parentid, pid; 3050 short trackid, parentid, pid; 3056 int npoints; 3051 int npoints; 3057 ifile.read(ctmp, sizeof(short)); 3052 ifile.read(ctmp, sizeof(short)); 3058 convertEndian(ctmp, trackid); 3053 convertEndian(ctmp, trackid); 3059 trk.setID(trackid); 3054 trk.setID(trackid); 3060 ifile.read(ctmp, sizeof(short)); 3055 ifile.read(ctmp, sizeof(short)); 3061 convertEndian(ctmp, parentid); 3056 convertEndian(ctmp, parentid); 3062 trk.setParentID(parentid); 3057 trk.setParentID(parentid); 3063 ifile.read(ctmp, sizeof(short)); 3058 ifile.read(ctmp, sizeof(short)); 3064 convertEndian(ctmp, pid); 3059 convertEndian(ctmp, pid); 3065 trk.setPID(pid); 3060 trk.setPID(pid); 3066 ifile.read(ctmp, sizeof(int)); 3061 ifile.read(ctmp, sizeof(int)); 3067 convertEndian(ctmp, npoints); 3062 convertEndian(ctmp, npoints); 3068 for(int i = 0; i < npoints; i++) { 3063 for(int i = 0; i < npoints; i++) { 3069 ifile.read(ctmp, 3*sizeof(float)); 3064 ifile.read(ctmp, 3*sizeof(float)); 3070 // storing only start and end points 3065 // storing only start and end points 3071 //if(i == 0 || i == npoints - 1) { 3066 //if(i == 0 || i == npoints - 1) { 3072 float * point = new float[3]; 3067 float * point = new float[3]; 3073 convertEndian(ctmp, point[0]); 3068 convertEndian(ctmp, point[0]); 3074 convertEndian(ctmp+sizeof(float), point[1]) 3069 convertEndian(ctmp+sizeof(float), point[1]); 3075 convertEndian(ctmp+2*sizeof(float), point[2 3070 convertEndian(ctmp+2*sizeof(float), point[2]); 3076 trk.addPoint(point); 3071 trk.addPoint(point); 3077 //} 3072 //} 3078 } 3073 } 3079 track.push_back(trk); 3074 track.push_back(trk); 3080 } 3075 } 3081 */ 3076 */ 3082 3077 3083 ifile.close(); 3078 ifile.close(); 3084 3079 3085 return true; 3080 return true; 3086 } 3081 } 3087 3082 3088 bool G4GMocrenIO::retrieveData2(char * _filen 3083 bool G4GMocrenIO::retrieveData2(char * _filename) { 3089 kFileName = _filename; 3084 kFileName = _filename; 3090 return retrieveData(); 3085 return retrieveData(); 3091 } 3086 } 3092 3087 3093 void G4GMocrenIO::setID() { 3088 void G4GMocrenIO::setID() { 3094 time_t t; 3089 time_t t; 3095 time(&t); 3090 time(&t); 3096 3091 3097 tm * ti; 3092 tm * ti; 3098 ti = localtime(&t); 3093 ti = localtime(&t); 3099 3094 3100 char cmonth[12][4] = {"Jan", "Feb", "Mar", 3095 char cmonth[12][4] = {"Jan", "Feb", "Mar", "Apr", 3101 "May", "Jun", "Jul", "Aug", 3096 "May", "Jun", "Jul", "Aug", 3102 "Sep", "Oct", "Nov", "Dec"}; 3097 "Sep", "Oct", "Nov", "Dec"}; 3103 std::stringstream ss; 3098 std::stringstream ss; 3104 ss << std::setfill('0') 3099 ss << std::setfill('0') 3105 << std::setw(2) 3100 << std::setw(2) 3106 << ti->tm_hour << ":" 3101 << ti->tm_hour << ":" 3107 << std::setw(2) 3102 << std::setw(2) 3108 << ti->tm_min << ":" 3103 << ti->tm_min << ":" 3109 << std::setw(2) 3104 << std::setw(2) 3110 << ti->tm_sec << "," 3105 << ti->tm_sec << "," 3111 << cmonth[ti->tm_mon] << "." 3106 << cmonth[ti->tm_mon] << "." 3112 << std::setw(2) 3107 << std::setw(2) 3113 << ti->tm_mday << "," 3108 << ti->tm_mday << "," 3114 << ti->tm_year+1900; 3109 << ti->tm_year+1900; 3115 3110 3116 kId = ss.str(); 3111 kId = ss.str(); 3117 } 3112 } 3118 3113 3119 // get & set the file version 3114 // get & set the file version 3120 std::string & G4GMocrenIO::getVersion() {retu 3115 std::string & G4GMocrenIO::getVersion() {return kVersion;} 3121 void G4GMocrenIO::setVersion(std::string & _v 3116 void G4GMocrenIO::setVersion(std::string & _version) {kVersion = _version;} 3122 3117 3123 // set endians of input/output data 3118 // set endians of input/output data 3124 void G4GMocrenIO::setLittleEndianInput(bool _ 3119 void G4GMocrenIO::setLittleEndianInput(bool _little) {kLittleEndianInput = _little;} 3125 void G4GMocrenIO::setLittleEndianOutput(bool 3120 void G4GMocrenIO::setLittleEndianOutput(bool _little) {kLittleEndianOutput = _little;} 3126 3121 3127 // voxel spacing 3122 // voxel spacing 3128 void G4GMocrenIO::setVoxelSpacing(float _spac 3123 void G4GMocrenIO::setVoxelSpacing(float _spacing[3]) { 3129 for(int i = 0; i < 3; i++) kVoxelSpacing[i] 3124 for(int i = 0; i < 3; i++) kVoxelSpacing[i] = _spacing[i]; 3130 } 3125 } 3131 void G4GMocrenIO::getVoxelSpacing(float _spac 3126 void G4GMocrenIO::getVoxelSpacing(float _spacing[3]) { 3132 for(int i = 0; i < 3; i++) _spacing[i] = kV 3127 for(int i = 0; i < 3; i++) _spacing[i] = kVoxelSpacing[i]; 3133 } 3128 } 3134 3129 3135 // get & set number of events 3130 // get & set number of events 3136 int & G4GMocrenIO::getNumberOfEvents() { 3131 int & G4GMocrenIO::getNumberOfEvents() { 3137 return kNumberOfEvents; 3132 return kNumberOfEvents; 3138 } 3133 } 3139 void G4GMocrenIO::setNumberOfEvents(int & _nu 3134 void G4GMocrenIO::setNumberOfEvents(int & _numberOfEvents) { 3140 kNumberOfEvents = _numberOfEvents; 3135 kNumberOfEvents = _numberOfEvents; 3141 } 3136 } 3142 void G4GMocrenIO::addOneEvent() { 3137 void G4GMocrenIO::addOneEvent() { 3143 kNumberOfEvents++; 3138 kNumberOfEvents++; 3144 } 3139 } 3145 3140 3146 // set/get pointer the modality image data 3141 // set/get pointer the modality image data 3147 void G4GMocrenIO::setPointerToModalityData(un 3142 void G4GMocrenIO::setPointerToModalityData(unsigned int & _pointer) { 3148 kPointerToModalityData = _pointer; 3143 kPointerToModalityData = _pointer; 3149 } 3144 } 3150 unsigned int G4GMocrenIO::getPointerToModalit 3145 unsigned int G4GMocrenIO::getPointerToModalityData() { 3151 return kPointerToModalityData; 3146 return kPointerToModalityData; 3152 } 3147 } 3153 // set/get pointer the dose distribution imag 3148 // set/get pointer the dose distribution image data 3154 void G4GMocrenIO::addPointerToDoseDistData(un 3149 void G4GMocrenIO::addPointerToDoseDistData(unsigned int & _pointer) { 3155 kPointerToDoseDistData.push_back(_pointer); 3150 kPointerToDoseDistData.push_back(_pointer); 3156 } 3151 } 3157 unsigned int G4GMocrenIO::getPointerToDoseDis 3152 unsigned int G4GMocrenIO::getPointerToDoseDistData(int _elem) { 3158 if(kPointerToDoseDistData.size() == 0 || 3153 if(kPointerToDoseDistData.size() == 0 || 3159 kPointerToDoseDistData.size() < (size_t) 3154 kPointerToDoseDistData.size() < (size_t)_elem) 3160 return 0; 3155 return 0; 3161 else 3156 else 3162 return kPointerToDoseDistData[_elem]; 3157 return kPointerToDoseDistData[_elem]; 3163 } 3158 } 3164 3159 3165 // set/get pointer the ROI image data 3160 // set/get pointer the ROI image data 3166 void G4GMocrenIO::setPointerToROIData(unsigne 3161 void G4GMocrenIO::setPointerToROIData(unsigned int & _pointer) { 3167 kPointerToROIData = _pointer; 3162 kPointerToROIData = _pointer; 3168 } 3163 } 3169 unsigned int G4GMocrenIO::getPointerToROIData 3164 unsigned int G4GMocrenIO::getPointerToROIData() { 3170 return kPointerToROIData; 3165 return kPointerToROIData; 3171 } 3166 } 3172 // set/get pointer the track data 3167 // set/get pointer the track data 3173 void G4GMocrenIO::setPointerToTrackData(unsig 3168 void G4GMocrenIO::setPointerToTrackData(unsigned int & _pointer) { 3174 kPointerToTrackData = _pointer; 3169 kPointerToTrackData = _pointer; 3175 } 3170 } 3176 unsigned int G4GMocrenIO::getPointerToTrackDa 3171 unsigned int G4GMocrenIO::getPointerToTrackData() { 3177 return kPointerToTrackData; 3172 return kPointerToTrackData; 3178 } 3173 } 3179 3174 3180 // calculate pointers for version 4 3175 // calculate pointers for version 4 3181 void G4GMocrenIO::calcPointers4() { 3176 void G4GMocrenIO::calcPointers4() { 3182 3177 3183 // pointer to modality data 3178 // pointer to modality data 3184 unsigned int pointer = 1070; // up to "poin 3179 unsigned int pointer = 1070; // up to "pointer to the detector data" except for "pointer to the dose dist data" 3185 int nDoseDist = getNumDoseDist(); 3180 int nDoseDist = getNumDoseDist(); 3186 pointer += nDoseDist*4; 3181 pointer += nDoseDist*4; 3187 3182 3188 setPointerToModalityData(pointer); 3183 setPointerToModalityData(pointer); 3189 3184 3190 // pointer to dose data 3185 // pointer to dose data 3191 // ct-density map for modality data 3186 // ct-density map for modality data 3192 int msize[3]; 3187 int msize[3]; 3193 getModalityImageSize(msize); 3188 getModalityImageSize(msize); 3194 short mminmax[2]; 3189 short mminmax[2]; 3195 getModalityImageMinMax(mminmax); 3190 getModalityImageMinMax(mminmax); 3196 int pmsize = 2*msize[0]*msize[1]*msize[2]; 3191 int pmsize = 2*msize[0]*msize[1]*msize[2]; 3197 int pmmap = 4*(mminmax[1] - mminmax[0] + 1) 3192 int pmmap = 4*(mminmax[1] - mminmax[0] + 1); 3198 pointer += 32 + pmsize + pmmap; 3193 pointer += 32 + pmsize + pmmap; 3199 // 3194 // 3200 kPointerToDoseDistData.clear(); 3195 kPointerToDoseDistData.clear(); 3201 if(nDoseDist == 0) { 3196 if(nDoseDist == 0) { 3202 unsigned int pointer0 = 0; 3197 unsigned int pointer0 = 0; 3203 addPointerToDoseDistData(pointer0); 3198 addPointerToDoseDistData(pointer0); 3204 } 3199 } 3205 for(int ndose = 0; ndose < nDoseDist; ndose 3200 for(int ndose = 0; ndose < nDoseDist; ndose++) { 3206 addPointerToDoseDistData(pointer); 3201 addPointerToDoseDistData(pointer); 3207 int dsize[3]; 3202 int dsize[3]; 3208 getDoseDistSize(dsize); 3203 getDoseDistSize(dsize); 3209 pointer += 44 + dsize[0]*dsize[1]*dsize[2 3204 pointer += 44 + dsize[0]*dsize[1]*dsize[2]*2 + 80; 3210 } 3205 } 3211 3206 3212 // pointer to roi data 3207 // pointer to roi data 3213 if(!isROIEmpty()) { 3208 if(!isROIEmpty()) { 3214 setPointerToROIData(pointer); 3209 setPointerToROIData(pointer); 3215 3210 3216 int rsize[3]; 3211 int rsize[3]; 3217 getROISize(rsize); 3212 getROISize(rsize); 3218 int prsize = 2*rsize[0]*rsize[1]*rsize[2] 3213 int prsize = 2*rsize[0]*rsize[1]*rsize[2]; 3219 pointer += 20 + prsize + 12; 3214 pointer += 20 + prsize + 12; 3220 } else { 3215 } else { 3221 unsigned int pointer0 = 0; 3216 unsigned int pointer0 = 0; 3222 setPointerToROIData(pointer0); 3217 setPointerToROIData(pointer0); 3223 } 3218 } 3224 3219 3225 // pointer to track data 3220 // pointer to track data 3226 int ntrk = (int)kTracks.size(); << 3221 int ntrk = kTracks.size(); 3227 if(ntrk != 0) { 3222 if(ntrk != 0) { 3228 setPointerToTrackData(pointer); 3223 setPointerToTrackData(pointer); 3229 3224 3230 pointer += 4; // # of tracks 3225 pointer += 4; // # of tracks 3231 for(int nt = 0; nt < ntrk; nt++) { 3226 for(int nt = 0; nt < ntrk; nt++) { 3232 int nsteps = kTracks[nt].getNumberOfSte 3227 int nsteps = kTracks[nt].getNumberOfSteps(); 3233 pointer += 4 + 3 + nsteps*(4*6); // # o 3228 pointer += 4 + 3 + nsteps*(4*6); // # of steps + color + steps(float*6) 3234 } 3229 } 3235 } else { 3230 } else { 3236 unsigned int pointer0 = 0; 3231 unsigned int pointer0 = 0; 3237 setPointerToTrackData(pointer0); 3232 setPointerToTrackData(pointer0); 3238 } 3233 } 3239 if(kVerbose > 0) G4cout << " pointer to the 3234 if(kVerbose > 0) G4cout << " pointer to the track data :" 3240 << kPointerToTrackData << G4endl; 3235 << kPointerToTrackData << G4endl; 3241 3236 3242 // pointer to detector data 3237 // pointer to detector data 3243 int ndet = (int)kDetectors.size(); << 3238 int ndet = kDetectors.size(); 3244 if(ndet != 0) { 3239 if(ndet != 0) { 3245 kPointerToDetectorData = pointer; 3240 kPointerToDetectorData = pointer; 3246 } else { 3241 } else { 3247 kPointerToDetectorData = 0; 3242 kPointerToDetectorData = 0; 3248 } 3243 } 3249 if(kVerbose > 0) G4cout << " pointer to the 3244 if(kVerbose > 0) G4cout << " pointer to the detector data :" 3250 << kPointerToDetectorData << G4end 3245 << kPointerToDetectorData << G4endl; 3251 3246 3252 } 3247 } 3253 3248 3254 // calculate pointers for ver.3 3249 // calculate pointers for ver.3 3255 void G4GMocrenIO::calcPointers3() { 3250 void G4GMocrenIO::calcPointers3() { 3256 3251 3257 // pointer to modality data 3252 // pointer to modality data 3258 unsigned int pointer = 1066; // up to "poin 3253 unsigned int pointer = 1066; // up to "pointer to the track data" except for "pointer to the dose dist data" 3259 int nDoseDist = getNumDoseDist(); 3254 int nDoseDist = getNumDoseDist(); 3260 pointer += nDoseDist*4; 3255 pointer += nDoseDist*4; 3261 3256 3262 setPointerToModalityData(pointer); 3257 setPointerToModalityData(pointer); 3263 3258 3264 // pointer to dose data 3259 // pointer to dose data 3265 // ct-density map for modality data 3260 // ct-density map for modality data 3266 int msize[3]; 3261 int msize[3]; 3267 getModalityImageSize(msize); 3262 getModalityImageSize(msize); 3268 short mminmax[2]; 3263 short mminmax[2]; 3269 getModalityImageMinMax(mminmax); 3264 getModalityImageMinMax(mminmax); 3270 int pmsize = 2*msize[0]*msize[1]*msize[2]; 3265 int pmsize = 2*msize[0]*msize[1]*msize[2]; 3271 int pmmap = 4*(mminmax[1] - mminmax[0] + 1) 3266 int pmmap = 4*(mminmax[1] - mminmax[0] + 1); 3272 pointer += 32 + pmsize + pmmap; 3267 pointer += 32 + pmsize + pmmap; 3273 // 3268 // 3274 kPointerToDoseDistData.clear(); 3269 kPointerToDoseDistData.clear(); 3275 if(nDoseDist == 0) { 3270 if(nDoseDist == 0) { 3276 unsigned int pointer0 = 0; 3271 unsigned int pointer0 = 0; 3277 addPointerToDoseDistData(pointer0); 3272 addPointerToDoseDistData(pointer0); 3278 } 3273 } 3279 for(int ndose = 0; ndose < nDoseDist; ndose 3274 for(int ndose = 0; ndose < nDoseDist; ndose++) { 3280 addPointerToDoseDistData(pointer); 3275 addPointerToDoseDistData(pointer); 3281 int dsize[3]; 3276 int dsize[3]; 3282 getDoseDistSize(dsize); 3277 getDoseDistSize(dsize); 3283 pointer += 44 + dsize[0]*dsize[1]*dsize[2 3278 pointer += 44 + dsize[0]*dsize[1]*dsize[2]*2; 3284 } 3279 } 3285 3280 3286 // pointer to roi data 3281 // pointer to roi data 3287 if(!isROIEmpty()) { 3282 if(!isROIEmpty()) { 3288 setPointerToROIData(pointer); 3283 setPointerToROIData(pointer); 3289 3284 3290 int rsize[3]; 3285 int rsize[3]; 3291 getROISize(rsize); 3286 getROISize(rsize); 3292 int prsize = 2*rsize[0]*rsize[1]*rsize[2] 3287 int prsize = 2*rsize[0]*rsize[1]*rsize[2]; 3293 pointer += 20 + prsize + 12; 3288 pointer += 20 + prsize + 12; 3294 } else { 3289 } else { 3295 unsigned int pointer0 = 0; 3290 unsigned int pointer0 = 0; 3296 setPointerToROIData(pointer0); 3291 setPointerToROIData(pointer0); 3297 } 3292 } 3298 3293 3299 // 3294 // 3300 if(getNumTracks() != 0) 3295 if(getNumTracks() != 0) 3301 setPointerToTrackData(pointer); 3296 setPointerToTrackData(pointer); 3302 else { 3297 else { 3303 unsigned int pointer0 = 0; 3298 unsigned int pointer0 = 0; 3304 setPointerToTrackData(pointer0); 3299 setPointerToTrackData(pointer0); 3305 } 3300 } 3306 3301 3307 } 3302 } 3308 3303 3309 // calculate pointers for ver.2 3304 // calculate pointers for ver.2 3310 void G4GMocrenIO::calcPointers2() { 3305 void G4GMocrenIO::calcPointers2() { 3311 3306 3312 // pointer to modality data 3307 // pointer to modality data 3313 unsigned int pointer = 65; 3308 unsigned int pointer = 65; 3314 setPointerToModalityData(pointer); 3309 setPointerToModalityData(pointer); 3315 3310 3316 // pointer to dose data 3311 // pointer to dose data 3317 int msize[3]; 3312 int msize[3]; 3318 getModalityImageSize(msize); 3313 getModalityImageSize(msize); 3319 short mminmax[2]; 3314 short mminmax[2]; 3320 getModalityImageMinMax(mminmax); 3315 getModalityImageMinMax(mminmax); 3321 int pmsize = 2*msize[0]*msize[1]*msize[2]; 3316 int pmsize = 2*msize[0]*msize[1]*msize[2]; 3322 int pmmap = 4*(mminmax[1] - mminmax[0] + 1) 3317 int pmmap = 4*(mminmax[1] - mminmax[0] + 1); 3323 pointer += 20 + pmsize + pmmap; 3318 pointer += 20 + pmsize + pmmap; 3324 int dsize[3]; 3319 int dsize[3]; 3325 getDoseDistSize(dsize); 3320 getDoseDistSize(dsize); 3326 kPointerToDoseDistData.clear(); 3321 kPointerToDoseDistData.clear(); 3327 if(dsize[0] != 0) { 3322 if(dsize[0] != 0) { 3328 kPointerToDoseDistData.push_back(pointer) 3323 kPointerToDoseDistData.push_back(pointer); 3329 3324 3330 int pdsize = 2*dsize[0]*dsize[1]*dsize[2] 3325 int pdsize = 2*dsize[0]*dsize[1]*dsize[2]; 3331 pointer += 20 + pdsize + 12; 3326 pointer += 20 + pdsize + 12; 3332 } else { 3327 } else { 3333 unsigned int pointer0 = 0; 3328 unsigned int pointer0 = 0; 3334 kPointerToDoseDistData.push_back(pointer0 3329 kPointerToDoseDistData.push_back(pointer0); 3335 } 3330 } 3336 3331 3337 // pointer to roi data 3332 // pointer to roi data 3338 if(!isROIEmpty()) { 3333 if(!isROIEmpty()) { 3339 int rsize[3]; 3334 int rsize[3]; 3340 getROISize(rsize); 3335 getROISize(rsize); 3341 setPointerToROIData(pointer); 3336 setPointerToROIData(pointer); 3342 int prsize = 2*rsize[0]*rsize[1]*rsize[2] 3337 int prsize = 2*rsize[0]*rsize[1]*rsize[2]; 3343 pointer += 20 + prsize + 12; 3338 pointer += 20 + prsize + 12; 3344 3339 3345 } else { 3340 } else { 3346 unsigned int pointer0 = 0; 3341 unsigned int pointer0 = 0; 3347 setPointerToROIData(pointer0); 3342 setPointerToROIData(pointer0); 3348 } 3343 } 3349 3344 3350 // 3345 // 3351 if(getNumTracks() != 0) 3346 if(getNumTracks() != 0) 3352 setPointerToTrackData(pointer); 3347 setPointerToTrackData(pointer); 3353 else { 3348 else { 3354 unsigned int pointer0 = 0; 3349 unsigned int pointer0 = 0; 3355 setPointerToTrackData(pointer0); 3350 setPointerToTrackData(pointer0); 3356 } 3351 } 3357 3352 3358 } 3353 } 3359 3354 3360 3355 3361 //----- Modality image -----// 3356 //----- Modality image -----// 3362 void G4GMocrenIO::getModalityImageSize(int _s 3357 void G4GMocrenIO::getModalityImageSize(int _size[3]) { 3363 3358 3364 kModality.getSize(_size); 3359 kModality.getSize(_size); 3365 } 3360 } 3366 void G4GMocrenIO::setModalityImageSize(int _s 3361 void G4GMocrenIO::setModalityImageSize(int _size[3]) { 3367 3362 3368 kModality.setSize(_size); 3363 kModality.setSize(_size); 3369 } 3364 } 3370 3365 3371 // get & set the modality image size 3366 // get & set the modality image size 3372 void G4GMocrenIO::setModalityImageScale(doubl 3367 void G4GMocrenIO::setModalityImageScale(double & _scale) { 3373 3368 3374 kModality.setScale(_scale); 3369 kModality.setScale(_scale); 3375 } 3370 } 3376 double G4GMocrenIO::getModalityImageScale() { 3371 double G4GMocrenIO::getModalityImageScale() { 3377 3372 3378 return kModality.getScale(); 3373 return kModality.getScale(); 3379 } 3374 } 3380 3375 3381 // set the modality image in CT 3376 // set the modality image in CT 3382 void G4GMocrenIO::setModalityImage(short * _i 3377 void G4GMocrenIO::setModalityImage(short * _image) { 3383 3378 3384 kModality.addImage(_image); 3379 kModality.addImage(_image); 3385 } 3380 } 3386 short * G4GMocrenIO::getModalityImage(int _z) 3381 short * G4GMocrenIO::getModalityImage(int _z) { 3387 3382 3388 return kModality.getImage(_z); 3383 return kModality.getImage(_z); 3389 } 3384 } 3390 void G4GMocrenIO::clearModalityImage() { 3385 void G4GMocrenIO::clearModalityImage() { 3391 3386 3392 kModality.clearImage(); 3387 kModality.clearImage(); 3393 } 3388 } 3394 // set/get the modality image density map 3389 // set/get the modality image density map 3395 void G4GMocrenIO::setModalityImageDensityMap( 3390 void G4GMocrenIO::setModalityImageDensityMap(std::vector<float> & _map) { 3396 kModalityImageDensityMap = _map; 3391 kModalityImageDensityMap = _map; 3397 } 3392 } 3398 std::vector<float> & G4GMocrenIO::getModality 3393 std::vector<float> & G4GMocrenIO::getModalityImageDensityMap() { 3399 return kModalityImageDensityMap; 3394 return kModalityImageDensityMap; 3400 } 3395 } 3401 // set the modality image min./max. 3396 // set the modality image min./max. 3402 void G4GMocrenIO::setModalityImageMinMax(shor 3397 void G4GMocrenIO::setModalityImageMinMax(short _minmax[2]) { 3403 3398 3404 kModality.setMinMax(_minmax); 3399 kModality.setMinMax(_minmax); 3405 } 3400 } 3406 // get the modality image min./max. 3401 // get the modality image min./max. 3407 void G4GMocrenIO::getModalityImageMinMax(shor 3402 void G4GMocrenIO::getModalityImageMinMax(short _minmax[2]) { 3408 3403 3409 short minmax[2]; 3404 short minmax[2]; 3410 kModality.getMinMax(minmax); 3405 kModality.getMinMax(minmax); 3411 for(int i = 0; i < 2; i++) _minmax[i] = min 3406 for(int i = 0; i < 2; i++) _minmax[i] = minmax[i]; 3412 } 3407 } 3413 short G4GMocrenIO::getModalityImageMax() { 3408 short G4GMocrenIO::getModalityImageMax() { 3414 3409 3415 short minmax[2]; 3410 short minmax[2]; 3416 kModality.getMinMax(minmax); 3411 kModality.getMinMax(minmax); 3417 return minmax[1]; 3412 return minmax[1]; 3418 } 3413 } 3419 short G4GMocrenIO::getModalityImageMin() { 3414 short G4GMocrenIO::getModalityImageMin() { 3420 3415 3421 short minmax[2]; 3416 short minmax[2]; 3422 kModality.getMinMax(minmax); 3417 kModality.getMinMax(minmax); 3423 return minmax[0]; 3418 return minmax[0]; 3424 } 3419 } 3425 // set/get position of the modality image cen 3420 // set/get position of the modality image center 3426 void G4GMocrenIO::setModalityCenterPosition(f 3421 void G4GMocrenIO::setModalityCenterPosition(float _center[3]) { 3427 3422 3428 kModality.setCenterPosition(_center); 3423 kModality.setCenterPosition(_center); 3429 } 3424 } 3430 void G4GMocrenIO::getModalityCenterPosition(f 3425 void G4GMocrenIO::getModalityCenterPosition(float _center[3]) { 3431 3426 3432 if(isROIEmpty()) 3427 if(isROIEmpty()) 3433 for(int i = 0; i < 3; i++) _center[i] = 0 3428 for(int i = 0; i < 3; i++) _center[i] = 0; 3434 else 3429 else 3435 kModality.getCenterPosition(_center); 3430 kModality.getCenterPosition(_center); 3436 } 3431 } 3437 // get & set the modality image unit 3432 // get & set the modality image unit 3438 std::string G4GMocrenIO::getModalityImageUnit 3433 std::string G4GMocrenIO::getModalityImageUnit() { 3439 return kModalityUnit; 3434 return kModalityUnit; 3440 } 3435 } 3441 void G4GMocrenIO::setModalityImageUnit(std::s 3436 void G4GMocrenIO::setModalityImageUnit(std::string & _unit) { 3442 kModalityUnit = _unit; 3437 kModalityUnit = _unit; 3443 } 3438 } 3444 // 3439 // 3445 short G4GMocrenIO::convertDensityToHU(float & 3440 short G4GMocrenIO::convertDensityToHU(float & _dens) { 3446 short rval = -1024; // default: air 3441 short rval = -1024; // default: air 3447 int nmap = (int)kModalityImageDensityMap.si 3442 int nmap = (int)kModalityImageDensityMap.size(); 3448 if(nmap != 0) { 3443 if(nmap != 0) { 3449 short minmax[2]; 3444 short minmax[2]; 3450 kModality.getMinMax(minmax); 3445 kModality.getMinMax(minmax); 3451 rval = minmax[1]; 3446 rval = minmax[1]; 3452 for(int i = 0; i < nmap; i++) { 3447 for(int i = 0; i < nmap; i++) { 3453 //G4cout << kModalityImageDensityMap[i] 3448 //G4cout << kModalityImageDensityMap[i] << G4endl; 3454 if(_dens <= kModalityImageDensityMap[i] 3449 if(_dens <= kModalityImageDensityMap[i]) { 3455 rval = i + minmax[0]; 3450 rval = i + minmax[0]; 3456 break; 3451 break; 3457 } 3452 } 3458 } 3453 } 3459 } 3454 } 3460 return rval; 3455 return rval; 3461 } 3456 } 3462 3457 3463 3458 3464 //----- Dose distribution -----// 3459 //----- Dose distribution -----// 3465 // 3460 // 3466 void G4GMocrenIO::newDoseDist() { 3461 void G4GMocrenIO::newDoseDist() { 3467 GMocrenDataPrimitive<double> doseData; 3462 GMocrenDataPrimitive<double> doseData; 3468 kDose.push_back(doseData); 3463 kDose.push_back(doseData); 3469 } 3464 } 3470 int G4GMocrenIO::getNumDoseDist() { 3465 int G4GMocrenIO::getNumDoseDist() { 3471 return (int)kDose.size(); 3466 return (int)kDose.size(); 3472 } 3467 } 3473 3468 3474 // get & set the dose distribution unit 3469 // get & set the dose distribution unit 3475 std::string G4GMocrenIO::getDoseDistUnit(int 3470 std::string G4GMocrenIO::getDoseDistUnit(int _num) { 3476 // to avoid a warning in the compile proces 3471 // to avoid a warning in the compile process 3477 if(kDoseUnit.size() > static_cast<size_t>(_ << 3472 int dummynum; >> 3473 dummynum = _num; 3478 3474 3479 return kDoseUnit; 3475 return kDoseUnit; 3480 } 3476 } 3481 void G4GMocrenIO::setDoseDistUnit(std::string 3477 void G4GMocrenIO::setDoseDistUnit(std::string & _unit, int _num) { 3482 // to avoid a warning in the compile proces 3478 // to avoid a warning in the compile process 3483 if(_unit.size() > static_cast<size_t>(_num) << 3479 int dummynum; >> 3480 dummynum = _num; 3484 3481 3485 //char unit[13]; 3482 //char unit[13]; 3486 //std::strncpy(unit, _unit.c_str(), 12); 3483 //std::strncpy(unit, _unit.c_str(), 12); 3487 //doseUnit = unit; 3484 //doseUnit = unit; 3488 kDoseUnit = _unit; 3485 kDoseUnit = _unit; 3489 } 3486 } 3490 // 3487 // 3491 void G4GMocrenIO::getDoseDistSize(int _size[3 3488 void G4GMocrenIO::getDoseDistSize(int _size[3], int _num) { 3492 if(isDoseEmpty()) 3489 if(isDoseEmpty()) 3493 for(int i = 0; i < 3; i++) _size[i] = 0; 3490 for(int i = 0; i < 3; i++) _size[i] = 0; 3494 else 3491 else 3495 kDose[_num].getSize(_size); 3492 kDose[_num].getSize(_size); 3496 } 3493 } 3497 void G4GMocrenIO::setDoseDistSize(int _size[3 3494 void G4GMocrenIO::setDoseDistSize(int _size[3], int _num) { 3498 3495 3499 kDose[_num].setSize(_size); 3496 kDose[_num].setSize(_size); 3500 3497 3501 //resetDose(); 3498 //resetDose(); 3502 } 3499 } 3503 3500 3504 void G4GMocrenIO::setDoseDistMinMax(short _mi 3501 void G4GMocrenIO::setDoseDistMinMax(short _minmax[2], int _num) { 3505 3502 3506 double minmax[2]; 3503 double minmax[2]; 3507 double scale = kDose[_num].getScale(); 3504 double scale = kDose[_num].getScale(); 3508 for(int i = 0; i < 2; i++) minmax[i] = (dou 3505 for(int i = 0; i < 2; i++) minmax[i] = (double)_minmax[i]*scale; 3509 kDose[_num].setMinMax(minmax); 3506 kDose[_num].setMinMax(minmax); 3510 } 3507 } 3511 void G4GMocrenIO::getDoseDistMinMax(short _mi 3508 void G4GMocrenIO::getDoseDistMinMax(short _minmax[2], int _num) { 3512 3509 3513 if(isDoseEmpty()) 3510 if(isDoseEmpty()) 3514 for(int i = 0; i < 2; i++) _minmax[i] = 0 3511 for(int i = 0; i < 2; i++) _minmax[i] = 0; 3515 else { 3512 else { 3516 double minmax[2]; 3513 double minmax[2]; 3517 kDose[_num].getMinMax(minmax); 3514 kDose[_num].getMinMax(minmax); 3518 double scale = kDose[_num].getScale(); 3515 double scale = kDose[_num].getScale(); 3519 for(int i = 0; i < 2; i++) _minmax[i] = ( 3516 for(int i = 0; i < 2; i++) _minmax[i] = (short)(minmax[i]/scale+0.5); 3520 } 3517 } 3521 } 3518 } 3522 void G4GMocrenIO::setDoseDistMinMax(double _m 3519 void G4GMocrenIO::setDoseDistMinMax(double _minmax[2], int _num) { 3523 3520 3524 kDose[_num].setMinMax(_minmax); 3521 kDose[_num].setMinMax(_minmax); 3525 } 3522 } 3526 void G4GMocrenIO::getDoseDistMinMax(double _m 3523 void G4GMocrenIO::getDoseDistMinMax(double _minmax[2], int _num) { 3527 3524 3528 if(isDoseEmpty()) 3525 if(isDoseEmpty()) 3529 for(int i = 0; i < 2; i++) _minmax[i] = 0 3526 for(int i = 0; i < 2; i++) _minmax[i] = 0.; 3530 else 3527 else 3531 kDose[_num].getMinMax(_minmax); 3528 kDose[_num].getMinMax(_minmax); 3532 } 3529 } 3533 3530 3534 // get & set the dose distribution image scal 3531 // get & set the dose distribution image scale 3535 void G4GMocrenIO::setDoseDistScale(double & _ 3532 void G4GMocrenIO::setDoseDistScale(double & _scale, int _num) { 3536 3533 3537 kDose[_num].setScale(_scale); 3534 kDose[_num].setScale(_scale); 3538 } 3535 } 3539 double G4GMocrenIO::getDoseDistScale(int _num 3536 double G4GMocrenIO::getDoseDistScale(int _num) { 3540 3537 3541 if(isDoseEmpty()) 3538 if(isDoseEmpty()) 3542 return 0.; 3539 return 0.; 3543 else 3540 else 3544 return kDose[_num].getScale(); 3541 return kDose[_num].getScale(); 3545 } 3542 } 3546 3543 3547 /* 3544 /* 3548 void G4GMocrenIO::initializeShortDoseDist() 3545 void G4GMocrenIO::initializeShortDoseDist() { 3549 ; 3546 ; 3550 } 3547 } 3551 void G4GMocrenIO::finalizeShortDoseDist() { 3548 void G4GMocrenIO::finalizeShortDoseDist() { 3552 ; 3549 ; 3553 } 3550 } 3554 */ 3551 */ 3555 // set the dose distribution image 3552 // set the dose distribution image 3556 void G4GMocrenIO::setShortDoseDist(short * _i 3553 void G4GMocrenIO::setShortDoseDist(short * _image, int _num) { 3557 3554 3558 int size[3]; 3555 int size[3]; 3559 kDose[_num].getSize(size); 3556 kDose[_num].getSize(size); 3560 int dsize = size[0]*size[1]; 3557 int dsize = size[0]*size[1]; 3561 double * ddata = new double[dsize]; 3558 double * ddata = new double[dsize]; 3562 double scale = kDose[_num].getScale(); 3559 double scale = kDose[_num].getScale(); 3563 double minmax[2]; 3560 double minmax[2]; 3564 kDose[_num].getMinMax(minmax); 3561 kDose[_num].getMinMax(minmax); 3565 for(int xy = 0; xy < dsize; xy++) { 3562 for(int xy = 0; xy < dsize; xy++) { 3566 ddata[xy] = _image[xy]*scale; 3563 ddata[xy] = _image[xy]*scale; 3567 if(ddata[xy] < minmax[0]) minmax[0] = dda 3564 if(ddata[xy] < minmax[0]) minmax[0] = ddata[xy]; 3568 if(ddata[xy] > minmax[1]) minmax[1] = dda 3565 if(ddata[xy] > minmax[1]) minmax[1] = ddata[xy]; 3569 } 3566 } 3570 kDose[_num].addImage(ddata); 3567 kDose[_num].addImage(ddata); 3571 3568 3572 // set min./max. 3569 // set min./max. 3573 kDose[_num].setMinMax(minmax); 3570 kDose[_num].setMinMax(minmax); 3574 } 3571 } 3575 void G4GMocrenIO::getShortDoseDist(short * _d 3572 void G4GMocrenIO::getShortDoseDist(short * _data, int _z, int _num) { 3576 3573 3577 if(_data == NULL) { 3574 if(_data == NULL) { 3578 if (G4VisManager::GetVerbosity() >= G4Vis 3575 if (G4VisManager::GetVerbosity() >= G4VisManager::errors) 3579 G4cout << "In G4GMocrenIO::getShortDose 3576 G4cout << "In G4GMocrenIO::getShortDoseDist(), " 3580 << "first argument is NULL pointer. " 3577 << "first argument is NULL pointer. " 3581 << "The argument must be allocated array. 3578 << "The argument must be allocated array." 3582 << G4endl; 3579 << G4endl; 3583 G4Exception("G4GMocrenIO::getShortDoseDis << 3580 std::exit(-1); 3584 "gMocren2002", FatalException << 3585 "Error."); << 3586 return; << 3587 } 3581 } 3588 3582 3589 int size[3]; 3583 int size[3]; 3590 kDose[_num].getSize(size); 3584 kDose[_num].getSize(size); 3591 //short * shdata = new short[size[0]*size[1 3585 //short * shdata = new short[size[0]*size[1]]; 3592 double * ddata = kDose[_num].getImage(_z); 3586 double * ddata = kDose[_num].getImage(_z); 3593 double scale = kDose[_num].getScale(); 3587 double scale = kDose[_num].getScale(); 3594 for(int xy = 0; xy < size[0]*size[1]; xy++) 3588 for(int xy = 0; xy < size[0]*size[1]; xy++) { 3595 _data[xy] = (short)(ddata[xy]/scale+0.5); 3589 _data[xy] = (short)(ddata[xy]/scale+0.5); //there is never negative value 3596 } 3590 } 3597 } 3591 } 3598 void G4GMocrenIO::getShortDoseDistMinMax(shor 3592 void G4GMocrenIO::getShortDoseDistMinMax(short _minmax[2], int _num) { 3599 double scale = kDose[_num].getScale(); 3593 double scale = kDose[_num].getScale(); 3600 double minmax[2]; 3594 double minmax[2]; 3601 kDose[_num].getMinMax(minmax); 3595 kDose[_num].getMinMax(minmax); 3602 for(int i = 0; i < 2; i++) 3596 for(int i = 0; i < 2; i++) 3603 _minmax[i] = (short)(minmax[i]/scale+0.5) 3597 _minmax[i] = (short)(minmax[i]/scale+0.5); 3604 } 3598 } 3605 // 3599 // 3606 void G4GMocrenIO::setDoseDist(double * _image 3600 void G4GMocrenIO::setDoseDist(double * _image, int _num) { 3607 3601 3608 kDose[_num].addImage(_image); 3602 kDose[_num].addImage(_image); 3609 } 3603 } 3610 double * G4GMocrenIO::getDoseDist(int _z, int 3604 double * G4GMocrenIO::getDoseDist(int _z, int _num) { 3611 3605 3612 double * image; 3606 double * image; 3613 if(isDoseEmpty()) { 3607 if(isDoseEmpty()) { 3614 image = 0; 3608 image = 0; 3615 } else { 3609 } else { 3616 image = kDose[_num].getImage(_z); 3610 image = kDose[_num].getImage(_z); 3617 } 3611 } 3618 return image; 3612 return image; 3619 } 3613 } 3620 /* 3614 /* 3621 void G4GMocrenIO::getDoseDist(double * & _i 3615 void G4GMocrenIO::getDoseDist(double * & _image, int _z, int _num) { 3622 3616 3623 G4cout << " <" << (void*)_image << "> "; 3617 G4cout << " <" << (void*)_image << "> "; 3624 if(isDoseEmpty()) { 3618 if(isDoseEmpty()) { 3625 _image = 0; 3619 _image = 0; 3626 } else { 3620 } else { 3627 _image = kDose[_num].getImage(_z); 3621 _image = kDose[_num].getImage(_z); 3628 G4cout << " <" << (void*)_image << "> "; 3622 G4cout << " <" << (void*)_image << "> "; 3629 G4cout << _image[100] << " "; 3623 G4cout << _image[100] << " "; 3630 } 3624 } 3631 } 3625 } 3632 */ 3626 */ 3633 bool G4GMocrenIO::addDoseDist(std::vector<dou 3627 bool G4GMocrenIO::addDoseDist(std::vector<double *> & _image, int _num) { 3634 3628 3635 int size[3]; 3629 int size[3]; 3636 getDoseDistSize(size, _num); 3630 getDoseDistSize(size, _num); 3637 std::vector<double *> dosedist = kDose[_num 3631 std::vector<double *> dosedist = kDose[_num].getImage(); 3638 3632 3639 int nimg = size[0]*size[1]; 3633 int nimg = size[0]*size[1]; 3640 for(int z = 0; z < size[2]; z++) { 3634 for(int z = 0; z < size[2]; z++) { 3641 for(int xy = 0; xy < nimg; xy++) { 3635 for(int xy = 0; xy < nimg; xy++) { 3642 dosedist[z][xy] += _image[z][xy]; 3636 dosedist[z][xy] += _image[z][xy]; 3643 } 3637 } 3644 } 3638 } 3645 3639 3646 return true; 3640 return true; 3647 } 3641 } 3648 //void setDoseDistDensityMap(float * _map) {d 3642 //void setDoseDistDensityMap(float * _map) {doseImageDensityMap = _map;}; 3649 // set the dose distribution image displaceme 3643 // set the dose distribution image displacement 3650 void G4GMocrenIO::setDoseDistCenterPosition(f 3644 void G4GMocrenIO::setDoseDistCenterPosition(float _center[3], int _num) { 3651 3645 3652 kDose[_num].setCenterPosition(_center); 3646 kDose[_num].setCenterPosition(_center); 3653 } 3647 } 3654 void G4GMocrenIO::getDoseDistCenterPosition(f 3648 void G4GMocrenIO::getDoseDistCenterPosition(float _center[3], int _num) { 3655 3649 3656 if(isDoseEmpty()) 3650 if(isDoseEmpty()) 3657 for(int i = 0; i < 3; i++) _center[i] = 0 3651 for(int i = 0; i < 3; i++) _center[i] = 0; 3658 else 3652 else 3659 kDose[_num].getCenterPosition(_center); 3653 kDose[_num].getCenterPosition(_center); 3660 } 3654 } 3661 // set & get name of dose distribution 3655 // set & get name of dose distribution 3662 void G4GMocrenIO::setDoseDistName(std::string 3656 void G4GMocrenIO::setDoseDistName(std::string _name, int _num) { 3663 3657 3664 kDose[_num].setName(_name); 3658 kDose[_num].setName(_name); 3665 } 3659 } 3666 std::string G4GMocrenIO::getDoseDistName(int 3660 std::string G4GMocrenIO::getDoseDistName(int _num) { 3667 3661 3668 std::string name; 3662 std::string name; 3669 if(isDoseEmpty()) 3663 if(isDoseEmpty()) 3670 return name; 3664 return name; 3671 else 3665 else 3672 return kDose[_num].getName(); 3666 return kDose[_num].getName(); 3673 } 3667 } 3674 // copy dose distributions 3668 // copy dose distributions 3675 void G4GMocrenIO::copyDoseDist(std::vector<cl 3669 void G4GMocrenIO::copyDoseDist(std::vector<class GMocrenDataPrimitive<double> > & _dose) { 3676 std::vector<class GMocrenDataPrimitive<doub 3670 std::vector<class GMocrenDataPrimitive<double> >::iterator itr; 3677 for(itr = kDose.begin(); itr != kDose.end() 3671 for(itr = kDose.begin(); itr != kDose.end(); itr++) { 3678 _dose.push_back(*itr); 3672 _dose.push_back(*itr); 3679 } 3673 } 3680 } 3674 } 3681 // merge two dose distributions 3675 // merge two dose distributions 3682 bool G4GMocrenIO::mergeDoseDist(std::vector<c 3676 bool G4GMocrenIO::mergeDoseDist(std::vector<class GMocrenDataPrimitive<double> > & _dose) { 3683 if(kDose.size() != _dose.size()) { 3677 if(kDose.size() != _dose.size()) { 3684 if (G4VisManager::GetVerbosity() >= G4Vis 3678 if (G4VisManager::GetVerbosity() >= G4VisManager::errors) { 3685 G4cout << "G4GMocrenIO::mergeDoseDist() 3679 G4cout << "G4GMocrenIO::mergeDoseDist() : Error" << G4endl; 3686 G4cout << " Unable to merge the dose 3680 G4cout << " Unable to merge the dose distributions,"<< G4endl; 3687 G4cout << " because of different size 3681 G4cout << " because of different size of dose maps."<< G4endl; 3688 } 3682 } 3689 return false; 3683 return false; 3690 } 3684 } 3691 3685 3692 int num = (int)kDose.size(); << 3686 int num = kDose.size(); 3693 std::vector<class GMocrenDataPrimitive<doub 3687 std::vector<class GMocrenDataPrimitive<double> >::iterator itr1 = kDose.begin(); 3694 std::vector<class GMocrenDataPrimitive<doub 3688 std::vector<class GMocrenDataPrimitive<double> >::iterator itr2 = _dose.begin(); 3695 for(int i = 0; i < num; i++, itr1++, itr2++ 3689 for(int i = 0; i < num; i++, itr1++, itr2++) { 3696 if (G4VisManager::GetVerbosity() >= G4Vis 3690 if (G4VisManager::GetVerbosity() >= G4VisManager::errors) 3697 if(kVerbose > 0) 3691 if(kVerbose > 0) 3698 G4cout << "merged dose distribution [" << i 3692 G4cout << "merged dose distribution [" << i << "]" << G4endl; 3699 *itr1 += *itr2; 3693 *itr1 += *itr2; 3700 } 3694 } 3701 3695 3702 return true; 3696 return true; 3703 } 3697 } 3704 // 3698 // 3705 void G4GMocrenIO::clearDoseDistAll() { 3699 void G4GMocrenIO::clearDoseDistAll() { 3706 3700 3707 if(!isDoseEmpty()) { 3701 if(!isDoseEmpty()) { 3708 for(int i = 0; i < getNumDoseDist(); i++) 3702 for(int i = 0; i < getNumDoseDist(); i++) { 3709 kDose[i].clear(); 3703 kDose[i].clear(); 3710 } 3704 } 3711 kDose.clear(); 3705 kDose.clear(); 3712 } 3706 } 3713 } 3707 } 3714 // 3708 // 3715 bool G4GMocrenIO::isDoseEmpty() { 3709 bool G4GMocrenIO::isDoseEmpty() { 3716 if(kDose.empty()) { 3710 if(kDose.empty()) { 3717 //if (G4VisManager::GetVerbosity() >= G4V 3711 //if (G4VisManager::GetVerbosity() >= G4VisManager::errors) 3718 // G4cout << "!!! dose distribution data 3712 // G4cout << "!!! dose distribution data is empty." << G4endl; 3719 return true; 3713 return true; 3720 } else { 3714 } else { 3721 return false; 3715 return false; 3722 } 3716 } 3723 } 3717 } 3724 3718 3725 // 3719 // 3726 void G4GMocrenIO::calcDoseDistScale() { 3720 void G4GMocrenIO::calcDoseDistScale() { 3727 3721 3728 double scale; 3722 double scale; 3729 double minmax[2]; 3723 double minmax[2]; 3730 3724 3731 for(int i = 0; i < (int)kDose.size(); i++) 3725 for(int i = 0; i < (int)kDose.size(); i++) { 3732 kDose[i].getMinMax(minmax); 3726 kDose[i].getMinMax(minmax); 3733 scale = minmax[1]/DOSERANGE; 3727 scale = minmax[1]/DOSERANGE; 3734 kDose[i].setScale(scale); 3728 kDose[i].setScale(scale); 3735 } 3729 } 3736 } 3730 } 3737 3731 3738 3732 3739 //----- RoI -----// 3733 //----- RoI -----// 3740 3734 3741 // add one RoI data 3735 // add one RoI data 3742 void G4GMocrenIO::newROI() { 3736 void G4GMocrenIO::newROI() { 3743 GMocrenDataPrimitive<short> roiData; 3737 GMocrenDataPrimitive<short> roiData; 3744 kRoi.push_back(roiData); 3738 kRoi.push_back(roiData); 3745 } 3739 } 3746 int G4GMocrenIO::getNumROI() { 3740 int G4GMocrenIO::getNumROI() { 3747 return (int)kRoi.size(); 3741 return (int)kRoi.size(); 3748 } 3742 } 3749 3743 3750 // set/get the ROI image scale 3744 // set/get the ROI image scale 3751 void G4GMocrenIO::setROIScale(double & _scale 3745 void G4GMocrenIO::setROIScale(double & _scale, int _num) { 3752 3746 3753 kRoi[_num].setScale(_scale); 3747 kRoi[_num].setScale(_scale); 3754 } 3748 } 3755 double G4GMocrenIO::getROIScale(int _num) { 3749 double G4GMocrenIO::getROIScale(int _num) { 3756 3750 3757 if(isROIEmpty()) 3751 if(isROIEmpty()) 3758 return 0.; 3752 return 0.; 3759 else 3753 else 3760 return kRoi[_num].getScale(); 3754 return kRoi[_num].getScale(); 3761 } 3755 } 3762 // set the ROI image 3756 // set the ROI image 3763 void G4GMocrenIO::setROI(short * _image, int 3757 void G4GMocrenIO::setROI(short * _image, int _num) { 3764 3758 3765 kRoi[_num].addImage(_image); 3759 kRoi[_num].addImage(_image); 3766 } 3760 } 3767 short * G4GMocrenIO::getROI(int _z, int _num) 3761 short * G4GMocrenIO::getROI(int _z, int _num) { 3768 3762 3769 if(isROIEmpty()) 3763 if(isROIEmpty()) 3770 return 0; 3764 return 0; 3771 else 3765 else 3772 return kRoi[_num].getImage(_z); 3766 return kRoi[_num].getImage(_z); 3773 } 3767 } 3774 // set/get the ROI image size 3768 // set/get the ROI image size 3775 void G4GMocrenIO::setROISize(int _size[3], in 3769 void G4GMocrenIO::setROISize(int _size[3], int _num) { 3776 3770 3777 return kRoi[_num].setSize(_size); 3771 return kRoi[_num].setSize(_size); 3778 } 3772 } 3779 void G4GMocrenIO::getROISize(int _size[3], in 3773 void G4GMocrenIO::getROISize(int _size[3], int _num) { 3780 3774 3781 if(isROIEmpty()) 3775 if(isROIEmpty()) 3782 for(int i = 0; i < 3; i++) _size[i] = 0; 3776 for(int i = 0; i < 3; i++) _size[i] = 0; 3783 else 3777 else 3784 return kRoi[_num].getSize(_size); 3778 return kRoi[_num].getSize(_size); 3785 } 3779 } 3786 // set/get the ROI image min. and max. 3780 // set/get the ROI image min. and max. 3787 void G4GMocrenIO::setROIMinMax(short _minmax[ 3781 void G4GMocrenIO::setROIMinMax(short _minmax[2], int _num) { 3788 3782 3789 kRoi[_num].setMinMax(_minmax); 3783 kRoi[_num].setMinMax(_minmax); 3790 } 3784 } 3791 void G4GMocrenIO::getROIMinMax(short _minmax[ 3785 void G4GMocrenIO::getROIMinMax(short _minmax[2], int _num) { 3792 3786 3793 if(isROIEmpty()) 3787 if(isROIEmpty()) 3794 for(int i = 0; i < 2; i++) _minmax[i] = 0 3788 for(int i = 0; i < 2; i++) _minmax[i] = 0; 3795 else 3789 else 3796 kRoi[_num].getMinMax(_minmax); 3790 kRoi[_num].getMinMax(_minmax); 3797 } 3791 } 3798 // set/get the ROI image displacement 3792 // set/get the ROI image displacement 3799 void G4GMocrenIO::setROICenterPosition(float 3793 void G4GMocrenIO::setROICenterPosition(float _center[3], int _num) { 3800 3794 3801 kRoi[_num].setCenterPosition(_center); 3795 kRoi[_num].setCenterPosition(_center); 3802 } 3796 } 3803 void G4GMocrenIO::getROICenterPosition(float 3797 void G4GMocrenIO::getROICenterPosition(float _center[3], int _num) { 3804 3798 3805 if(isROIEmpty()) 3799 if(isROIEmpty()) 3806 for(int i = 0; i < 3; i++) _center[i] = 0 3800 for(int i = 0; i < 3; i++) _center[i] = 0; 3807 else 3801 else 3808 kRoi[_num].getCenterPosition(_center); 3802 kRoi[_num].getCenterPosition(_center); 3809 } 3803 } 3810 // 3804 // 3811 void G4GMocrenIO::clearROIAll() { 3805 void G4GMocrenIO::clearROIAll() { 3812 3806 3813 if(!isROIEmpty()) { 3807 if(!isROIEmpty()) { 3814 for(int i = 0; i < getNumROI(); i++) { 3808 for(int i = 0; i < getNumROI(); i++) { 3815 kRoi[i].clear(); 3809 kRoi[i].clear(); 3816 } 3810 } 3817 kRoi.clear(); 3811 kRoi.clear(); 3818 } 3812 } 3819 } 3813 } 3820 // 3814 // 3821 bool G4GMocrenIO::isROIEmpty() { 3815 bool G4GMocrenIO::isROIEmpty() { 3822 if(kRoi.empty()) { 3816 if(kRoi.empty()) { 3823 //if (G4VisManager::GetVerbosity() >= G4V 3817 //if (G4VisManager::GetVerbosity() >= G4VisManager::errors) 3824 // G4cout << "!!! ROI data is empty." << 3818 // G4cout << "!!! ROI data is empty." << G4endl; 3825 return true; 3819 return true; 3826 } else { 3820 } else { 3827 return false; 3821 return false; 3828 } 3822 } 3829 } 3823 } 3830 3824 3831 3825 3832 3826 3833 //----- Track information -----// 3827 //----- Track information -----// 3834 3828 3835 int G4GMocrenIO::getNumTracks() { 3829 int G4GMocrenIO::getNumTracks() { 3836 return (int)kSteps.size(); 3830 return (int)kSteps.size(); 3837 } 3831 } 3838 int G4GMocrenIO::getNumTracks4() { 3832 int G4GMocrenIO::getNumTracks4() { 3839 return (int)kTracks.size(); 3833 return (int)kTracks.size(); 3840 } 3834 } 3841 void G4GMocrenIO::addTrack(float * _tracks) { 3835 void G4GMocrenIO::addTrack(float * _tracks) { 3842 kSteps.push_back(_tracks); 3836 kSteps.push_back(_tracks); 3843 } 3837 } 3844 void G4GMocrenIO::setTracks(std::vector<float 3838 void G4GMocrenIO::setTracks(std::vector<float *> & _tracks) { 3845 kSteps = _tracks; 3839 kSteps = _tracks; 3846 } 3840 } 3847 std::vector<float *> & G4GMocrenIO::getTracks 3841 std::vector<float *> & G4GMocrenIO::getTracks() { 3848 return kSteps; 3842 return kSteps; 3849 } 3843 } 3850 void G4GMocrenIO::addTrackColor(unsigned char 3844 void G4GMocrenIO::addTrackColor(unsigned char * _colors) { 3851 kStepColors.push_back(_colors); 3845 kStepColors.push_back(_colors); 3852 } 3846 } 3853 void G4GMocrenIO::setTrackColors(std::vector< 3847 void G4GMocrenIO::setTrackColors(std::vector<unsigned char *> & _trackColors) { 3854 kStepColors = _trackColors; 3848 kStepColors = _trackColors; 3855 } 3849 } 3856 std::vector<unsigned char *> & G4GMocrenIO::g 3850 std::vector<unsigned char *> & G4GMocrenIO::getTrackColors() { 3857 return kStepColors; 3851 return kStepColors; 3858 } 3852 } 3859 void G4GMocrenIO::copyTracks(std::vector<floa 3853 void G4GMocrenIO::copyTracks(std::vector<float *> & _tracks, 3860 std::vector<unsigned char *> & _ 3854 std::vector<unsigned char *> & _colors) { 3861 std::vector<float *>::iterator titr; 3855 std::vector<float *>::iterator titr; 3862 for(titr = kSteps.begin(); titr != kSteps.e 3856 for(titr = kSteps.begin(); titr != kSteps.end(); titr++) { 3863 float * pts = new float[6]; 3857 float * pts = new float[6]; 3864 for(int i = 0; i < 6; i++) { 3858 for(int i = 0; i < 6; i++) { 3865 pts[i] = (*titr)[i]; 3859 pts[i] = (*titr)[i]; 3866 } 3860 } 3867 _tracks.push_back(pts); 3861 _tracks.push_back(pts); 3868 } 3862 } 3869 3863 3870 std::vector<unsigned char *>::iterator citr 3864 std::vector<unsigned char *>::iterator citr; 3871 for(citr = kStepColors.begin(); citr != kSt 3865 for(citr = kStepColors.begin(); citr != kStepColors.end(); citr++) { 3872 unsigned char * pts = new unsigned char[3 3866 unsigned char * pts = new unsigned char[3]; 3873 for(int i = 0; i < 3; i++) { 3867 for(int i = 0; i < 3; i++) { 3874 pts[i] = (*citr)[i]; 3868 pts[i] = (*citr)[i]; 3875 } 3869 } 3876 _colors.push_back(pts); 3870 _colors.push_back(pts); 3877 } 3871 } 3878 } 3872 } 3879 void G4GMocrenIO::mergeTracks(std::vector<flo 3873 void G4GMocrenIO::mergeTracks(std::vector<float *> & _tracks, 3880 std::vector<unsigned char *> & _color 3874 std::vector<unsigned char *> & _colors) { 3881 std::vector<float *>::iterator titr; 3875 std::vector<float *>::iterator titr; 3882 for(titr = _tracks.begin(); titr != _tracks 3876 for(titr = _tracks.begin(); titr != _tracks.end(); titr++) { 3883 addTrack(*titr); 3877 addTrack(*titr); 3884 } 3878 } 3885 3879 3886 std::vector<unsigned char *>::iterator citr 3880 std::vector<unsigned char *>::iterator citr; 3887 for(citr = _colors.begin(); citr != _colors 3881 for(citr = _colors.begin(); citr != _colors.end(); citr++) { 3888 addTrackColor(*citr); 3882 addTrackColor(*citr); 3889 } 3883 } 3890 } 3884 } 3891 void G4GMocrenIO::addTrack(std::vector<float 3885 void G4GMocrenIO::addTrack(std::vector<float *> & _steps, unsigned char _color[3]) { 3892 3886 3893 std::vector<float *>::iterator itr = _steps 3887 std::vector<float *>::iterator itr = _steps.begin(); 3894 std::vector<struct GMocrenTrack::Step> st 3888 std::vector<struct GMocrenTrack::Step> steps; 3895 for(; itr != _steps.end(); itr++) { 3889 for(; itr != _steps.end(); itr++) { 3896 struct GMocrenTrack::Step step; 3890 struct GMocrenTrack::Step step; 3897 for(int i = 0; i < 3; i++) { 3891 for(int i = 0; i < 3; i++) { 3898 step.startPoint[i] = (*itr)[i]; 3892 step.startPoint[i] = (*itr)[i]; 3899 step.endPoint[i] = (*itr)[i+3]; 3893 step.endPoint[i] = (*itr)[i+3]; 3900 } 3894 } 3901 steps.push_back(step); 3895 steps.push_back(step); 3902 } 3896 } 3903 GMocrenTrack track; 3897 GMocrenTrack track; 3904 track.setTrack(steps); 3898 track.setTrack(steps); 3905 track.setColor(_color); 3899 track.setColor(_color); 3906 kTracks.push_back(track); 3900 kTracks.push_back(track); 3907 3901 3908 } 3902 } 3909 void G4GMocrenIO::getTrack(int _num, std::vec 3903 void G4GMocrenIO::getTrack(int _num, std::vector<float *> & _steps, 3910 std::vector<unsigned char *> & _co 3904 std::vector<unsigned char *> & _color) { 3911 3905 3912 if(_num > (int)kTracks.size()) { 3906 if(_num > (int)kTracks.size()) { 3913 if (G4VisManager::GetVerbosity() >= G4Vis 3907 if (G4VisManager::GetVerbosity() >= G4VisManager::errors) 3914 G4cout << "ERROR in getTrack() : " << G 3908 G4cout << "ERROR in getTrack() : " << G4endl; 3915 G4Exception("G4GMocrenIO::getTrack()", << 3909 std::exit(-1); 3916 "gMocren2003", FatalException << 3917 "Error."); << 3918 } 3910 } 3919 unsigned char * color = new unsigned char[3 3911 unsigned char * color = new unsigned char[3]; 3920 kTracks[_num].getColor(color); 3912 kTracks[_num].getColor(color); 3921 _color.push_back(color); 3913 _color.push_back(color); 3922 3914 3923 // steps 3915 // steps 3924 int nsteps = kTracks[_num].getNumberOfSteps 3916 int nsteps = kTracks[_num].getNumberOfSteps(); 3925 for(int isteps = 0; isteps < nsteps; isteps << 3917 for(int ns = 0; ns < nsteps; ns++) { 3926 float * stepPoints = new float[6]; 3918 float * stepPoints = new float[6]; 3927 kTracks[_num].getStep(stepPoints[0], step 3919 kTracks[_num].getStep(stepPoints[0], stepPoints[1], stepPoints[2], 3928 stepPoints[3], stepPoints[4], stepPoi 3920 stepPoints[3], stepPoints[4], stepPoints[5], 3929 isteps); << 3921 ns); 3930 _steps.push_back(stepPoints); 3922 _steps.push_back(stepPoints); 3931 } 3923 } 3932 } 3924 } 3933 3925 3934 void G4GMocrenIO::translateTracks(std::vector 3926 void G4GMocrenIO::translateTracks(std::vector<float> & _translate) { 3935 std::vector<class GMocrenTrack>::iterator i 3927 std::vector<class GMocrenTrack>::iterator itr = kTracks.begin(); 3936 for(; itr != kTracks.end(); itr++) { 3928 for(; itr != kTracks.end(); itr++) { 3937 itr->translate(_translate); 3929 itr->translate(_translate); 3938 } 3930 } 3939 } 3931 } 3940 3932 3941 3933 3942 3934 3943 3935 3944 //----- Detector information -----// 3936 //----- Detector information -----// 3945 int G4GMocrenIO::getNumberOfDetectors() { 3937 int G4GMocrenIO::getNumberOfDetectors() { 3946 return (int)kDetectors.size(); 3938 return (int)kDetectors.size(); 3947 } 3939 } 3948 void G4GMocrenIO::addDetector(std::string & _ 3940 void G4GMocrenIO::addDetector(std::string & _name, 3949 std::vector<float *> & _det, 3941 std::vector<float *> & _det, 3950 unsigned char _color[3]) { 3942 unsigned char _color[3]) { 3951 3943 3952 std::vector<float *>::iterator itr = _det 3944 std::vector<float *>::iterator itr = _det.begin(); 3953 std::vector<struct GMocrenDetector::Edge> 3945 std::vector<struct GMocrenDetector::Edge> edges; 3954 for(; itr != _det.end(); itr++) { 3946 for(; itr != _det.end(); itr++) { 3955 struct GMocrenDetector::Edge edge; 3947 struct GMocrenDetector::Edge edge; 3956 for(int i = 0; i < 3; i++) { 3948 for(int i = 0; i < 3; i++) { 3957 edge.startPoint[i] = (*itr)[i]; 3949 edge.startPoint[i] = (*itr)[i]; 3958 edge.endPoint[i] = (*itr)[i+3]; 3950 edge.endPoint[i] = (*itr)[i+3]; 3959 } 3951 } 3960 edges.push_back(edge); 3952 edges.push_back(edge); 3961 } 3953 } 3962 GMocrenDetector detector; 3954 GMocrenDetector detector; 3963 detector.setDetector(edges); 3955 detector.setDetector(edges); 3964 detector.setColor(_color); 3956 detector.setColor(_color); 3965 detector.setName(_name); 3957 detector.setName(_name); 3966 kDetectors.push_back(detector); 3958 kDetectors.push_back(detector); 3967 3959 3968 } 3960 } 3969 3961 3970 void G4GMocrenIO::getDetector(int _num, std:: 3962 void G4GMocrenIO::getDetector(int _num, std::vector<float *> & _edges, 3971 std::vector<unsigned char *> & _color 3963 std::vector<unsigned char *> & _color, 3972 std::string & _detName) { 3964 std::string & _detName) { 3973 3965 3974 if(_num > (int)kDetectors.size()) { 3966 if(_num > (int)kDetectors.size()) { 3975 if (G4VisManager::GetVerbosity() >= G4Vis 3967 if (G4VisManager::GetVerbosity() >= G4VisManager::errors) 3976 G4cout << "ERROR in getDetector() : " < 3968 G4cout << "ERROR in getDetector() : " << G4endl; 3977 << 3969 std::exit(-1); 3978 G4Exception("G4GMocrenIO::getDetector()", << 3979 "gMocren2004", FatalException << 3980 "Error."); << 3981 } 3970 } 3982 3971 3983 _detName = kDetectors[_num].getName(); 3972 _detName = kDetectors[_num].getName(); 3984 3973 3985 unsigned char * color = new unsigned char[3 3974 unsigned char * color = new unsigned char[3]; 3986 kDetectors[_num].getColor(color); 3975 kDetectors[_num].getColor(color); 3987 _color.push_back(color); 3976 _color.push_back(color); 3988 3977 3989 // edges 3978 // edges 3990 int nedges = kDetectors[_num].getNumberOfEd 3979 int nedges = kDetectors[_num].getNumberOfEdges(); 3991 for(int ne = 0; ne < nedges; ne++) { 3980 for(int ne = 0; ne < nedges; ne++) { 3992 float * edgePoints = new float[6]; 3981 float * edgePoints = new float[6]; 3993 kDetectors[_num].getEdge(edgePoints[0], e 3982 kDetectors[_num].getEdge(edgePoints[0], edgePoints[1], edgePoints[2], 3994 edgePoints[3], edgePoints[4], edge 3983 edgePoints[3], edgePoints[4], edgePoints[5], 3995 ne); 3984 ne); 3996 _edges.push_back(edgePoints); 3985 _edges.push_back(edgePoints); 3997 } 3986 } 3998 } 3987 } 3999 3988 4000 void G4GMocrenIO::translateDetector(std::vect 3989 void G4GMocrenIO::translateDetector(std::vector<float> & _translate) { 4001 std::vector<class GMocrenDetector>::iterato 3990 std::vector<class GMocrenDetector>::iterator itr = kDetectors.begin(); 4002 for(; itr != kDetectors.end(); itr++) { 3991 for(; itr != kDetectors.end(); itr++) { 4003 itr->translate(_translate); 3992 itr->translate(_translate); 4004 } 3993 } 4005 } 3994 } 4006 3995 4007 // endian conversion 3996 // endian conversion 4008 template <typename T> 3997 template <typename T> 4009 void G4GMocrenIO::convertEndian(char * _val, 3998 void G4GMocrenIO::convertEndian(char * _val, T & _rval) { 4010 3999 4011 if((kLittleEndianOutput && !kLittleEndianIn 4000 if((kLittleEndianOutput && !kLittleEndianInput) || // big endian 4012 (!kLittleEndianOutput && kLittleEndianIn 4001 (!kLittleEndianOutput && kLittleEndianInput)) { // little endian 4013 4002 4014 const int SIZE = sizeof(_rval); 4003 const int SIZE = sizeof(_rval); 4015 char ctemp; 4004 char ctemp; 4016 for(int i = 0; i < SIZE/2; i++) { 4005 for(int i = 0; i < SIZE/2; i++) { 4017 ctemp = _val[i]; 4006 ctemp = _val[i]; 4018 _val[i] = _val[SIZE - 1 - i]; 4007 _val[i] = _val[SIZE - 1 - i]; 4019 _val[SIZE - 1 - i] = ctemp; 4008 _val[SIZE - 1 - i] = ctemp; 4020 } 4009 } 4021 } 4010 } 4022 _rval = *(T *)_val; 4011 _rval = *(T *)_val; 4023 } 4012 } 4024 4013 4025 // inversion of byte order 4014 // inversion of byte order 4026 template <typename T> 4015 template <typename T> 4027 void G4GMocrenIO::invertByteOrder(char * _val 4016 void G4GMocrenIO::invertByteOrder(char * _val, T & _rval) { 4028 4017 4029 const int SIZE = sizeof(_rval); 4018 const int SIZE = sizeof(_rval); 4030 //char * cval = new char[SIZE]; 4019 //char * cval = new char[SIZE]; 4031 union { 4020 union { 4032 char cu[16]; 4021 char cu[16]; 4033 T tu; 4022 T tu; 4034 } uni; 4023 } uni; 4035 for(int i = 0; i < SIZE; i++) { 4024 for(int i = 0; i < SIZE; i++) { 4036 uni.cu[i] = _val[SIZE-1-i]; 4025 uni.cu[i] = _val[SIZE-1-i]; 4037 //cval[i] = _val[SIZE-i-1]; 4026 //cval[i] = _val[SIZE-i-1]; 4038 } 4027 } 4039 //_rval = *(T *)cval; 4028 //_rval = *(T *)cval; 4040 _rval = uni.tu; 4029 _rval = uni.tu; 4041 //delete [] cval; 4030 //delete [] cval; 4042 } 4031 } 4043 4032 4044 //----- kVerbose information -----// 4033 //----- kVerbose information -----// 4045 void G4GMocrenIO::setVerboseLevel(int _level) 4034 void G4GMocrenIO::setVerboseLevel(int _level) { 4046 kVerbose = _level; 4035 kVerbose = _level; 4047 } 4036 } 4048 4037 4049 4038