Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // 27 // >> 28 // $Id: SoBox.cc 66373 2012-12-18 09:41:34Z gcosmo $ 28 // 29 // 29 /*----------------------------HEPVis---------- 30 /*----------------------------HEPVis----------------------------------------*/ 30 /* 31 /* */ 31 /* Node: SoBox 32 /* Node: SoBox */ 32 /* Description: Represents the G4Box Gean 33 /* Description: Represents the G4Box Geant Geometry entity */ 33 /* Author: Joe Boudreau Nov 11 1996 34 /* Author: Joe Boudreau Nov 11 1996 */ 34 /* 35 /* */ 35 /*-------------------------------------------- 36 /*--------------------------------------------------------------------------*/ 36 37 >> 38 #ifdef G4VIS_BUILD_OI_DRIVER >> 39 37 // this : 40 // this : 38 #include "HEPVis/nodes/SoBox.h" 41 #include "HEPVis/nodes/SoBox.h" 39 42 40 #include <assert.h> 43 #include <assert.h> 41 #include <cmath> 44 #include <cmath> 42 45 43 #include <Inventor/SbBox.h> 46 #include <Inventor/SbBox.h> 44 #include <Inventor/fields/SoSFFloat.h> 47 #include <Inventor/fields/SoSFFloat.h> 45 #include <Inventor/misc/SoChildList.h> 48 #include <Inventor/misc/SoChildList.h> 46 #include <Inventor/nodes/SoSeparator.h> 49 #include <Inventor/nodes/SoSeparator.h> 47 #include <Inventor/nodes/SoCube.h> 50 #include <Inventor/nodes/SoCube.h> 48 #include <Inventor/nodes/SoScale.h> 51 #include <Inventor/nodes/SoScale.h> 49 #include <Inventor/actions/SoAction.h> 52 #include <Inventor/actions/SoAction.h> 50 #include <Inventor/nodes/SoIndexedFaceSet.h> 53 #include <Inventor/nodes/SoIndexedFaceSet.h> 51 #include <Inventor/SoPrimitiveVertex.h> 54 #include <Inventor/SoPrimitiveVertex.h> 52 #include <Inventor/elements/SoTextureCoordinat 55 #include <Inventor/elements/SoTextureCoordinateElement.h> 53 56 54 // This statement is required 57 // This statement is required 55 SO_NODE_SOURCE(SoBox) 58 SO_NODE_SOURCE(SoBox) 56 59 57 // Constructor 60 // Constructor 58 SoBox::SoBox() { 61 SoBox::SoBox() { 59 // This statement is required 62 // This statement is required 60 SO_NODE_CONSTRUCTOR(SoBox); 63 SO_NODE_CONSTRUCTOR(SoBox); 61 64 62 // Data fields are initialized like this: 65 // Data fields are initialized like this: 63 SO_NODE_ADD_FIELD(fDx, (1.0)) 66 SO_NODE_ADD_FIELD(fDx, (1.0)); 64 SO_NODE_ADD_FIELD(fDy, (1.0)) 67 SO_NODE_ADD_FIELD(fDy, (1.0)); 65 SO_NODE_ADD_FIELD(fDz, (1.0)) 68 SO_NODE_ADD_FIELD(fDz, (1.0)); 66 SO_NODE_ADD_FIELD(alternateRep, (NULL) 69 SO_NODE_ADD_FIELD(alternateRep, (NULL)); 67 children = new SoChildList(this); 70 children = new SoChildList(this); 68 } 71 } 69 72 70 // Destructor 73 // Destructor 71 SoBox::~SoBox() { 74 SoBox::~SoBox() { 72 delete children; 75 delete children; 73 } 76 } 74 77 75 78 76 // initClass 79 // initClass 77 void SoBox::initClass(){ 80 void SoBox::initClass(){ 78 // This statement is required. 81 // This statement is required. 79 static bool first = true; << 82 SO_NODE_INIT_CLASS(SoBox,SoShape,"Shape"); 80 if (first) { << 81 first = false; << 82 SO_NODE_INIT_CLASS(SoBox,SoShape,"Shape"); << 83 } << 84 } 83 } 85 84 86 85 87 // generatePrimitives 86 // generatePrimitives 88 void SoBox::generatePrimitives(SoAction *actio 87 void SoBox::generatePrimitives(SoAction *action) { 89 // This variable is used to store each verte 88 // This variable is used to store each vertex 90 SoPrimitiveVertex pv; 89 SoPrimitiveVertex pv; 91 90 92 // Access the stat from the action 91 // Access the stat from the action 93 SoState *state = action->getState(); 92 SoState *state = action->getState(); 94 93 95 // See if we have to use a texture coordinat 94 // See if we have to use a texture coordinate function, 96 // rather than generating explicit texture c 95 // rather than generating explicit texture coordinates. 97 SbBool useTexFunction= 96 SbBool useTexFunction= 98 (SoTextureCoordinateElement::getType(state 97 (SoTextureCoordinateElement::getType(state) == 99 SoTextureCoordinateElement::FUNCTION); 98 SoTextureCoordinateElement::FUNCTION); 100 99 101 // If we need to generate texture coordinate 100 // If we need to generate texture coordinates with a function, 102 // we'll need an SoGLTextureCoordinateElemen 101 // we'll need an SoGLTextureCoordinateElement. Otherwise, we'll 103 // set up the coordinates directly. 102 // set up the coordinates directly. 104 const SoTextureCoordinateElement *tce = NULL 103 const SoTextureCoordinateElement *tce = NULL; 105 SbVec4f texCoord; 104 SbVec4f texCoord; 106 if (useTexFunction) { 105 if (useTexFunction) { 107 tce = SoTextureCoordinateElement::getInsta 106 tce = SoTextureCoordinateElement::getInstance(state); 108 } 107 } 109 else { 108 else { 110 texCoord[2] = 0.0; 109 texCoord[2] = 0.0; 111 texCoord[3] = 1.0; 110 texCoord[3] = 1.0; 112 } 111 } 113 SbVec3f point, normal; 112 SbVec3f point, normal; 114 113 115 114 116 ////////////////////////////////////////// 115 ////////////////////////////////////////// 117 //---------------------------------------- 116 //---------------------------------------- 118 #define GEN_VERTEX(pv,x,y,z,s,t,nx,ny,nz) \ 117 #define GEN_VERTEX(pv,x,y,z,s,t,nx,ny,nz) \ 119 point.setValue(x,y,z); \ 118 point.setValue(x,y,z); \ 120 normal.setValue(nx,ny,nz); \ 119 normal.setValue(nx,ny,nz); \ 121 if (useTexFunction) { \ 120 if (useTexFunction) { \ 122 texCoord=tce->get(point,normal); \ 121 texCoord=tce->get(point,normal); \ 123 } \ 122 } \ 124 else { \ 123 else { \ 125 texCoord[0]=s; \ 124 texCoord[0]=s; \ 126 texCoord[1]=t; \ 125 texCoord[1]=t; \ 127 } \ 126 } \ 128 pv.setPoint(point); \ 127 pv.setPoint(point); \ 129 pv.setNormal(normal); \ 128 pv.setNormal(normal); \ 130 pv.setTextureCoords(texCoord); \ 129 pv.setTextureCoords(texCoord); \ 131 shapeVertex(&pv); 130 shapeVertex(&pv); 132 //---------------------------------------- 131 //---------------------------------------- 133 ////////////////////////////////////////// 132 ////////////////////////////////////////// 134 133 135 const int NPOINTS=8, NFACES=6, NINDICES = NF 134 const int NPOINTS=8, NFACES=6, NINDICES = NFACES*5; 136 int indices[NINDICES] = {3,2,1,0, SO_END_FAC 135 int indices[NINDICES] = {3,2,1,0, SO_END_FACE_INDEX, //z back. 137 4,5,6,7, SO_END_FACE_INDEX, //z fron 136 4,5,6,7, SO_END_FACE_INDEX, //z front. 138 0,1,5,4, SO_END_FACE_INDEX, //y up. 137 0,1,5,4, SO_END_FACE_INDEX, //y up. 139 1,2,6,5, SO_END_FACE_INDEX, //x left 138 1,2,6,5, SO_END_FACE_INDEX, //x left. 140 2,3,7,6, SO_END_FACE_INDEX, //y down 139 2,3,7,6, SO_END_FACE_INDEX, //y down. 141 3,0,4,7, SO_END_FACE_INDEX}; //x righ 140 3,0,4,7, SO_END_FACE_INDEX}; //x right. 142 141 143 142 144 // points for the eight vertices 143 // points for the eight vertices 145 float points[NPOINTS][3]; 144 float points[NPOINTS][3]; 146 points[0][0] = fDx.getValue(); 145 points[0][0] = fDx.getValue(); 147 points[0][1] = fDy.getValue(); 146 points[0][1] = fDy.getValue(); 148 points[0][2] = -fDz.getValue(); 147 points[0][2] = -fDz.getValue(); 149 148 150 points[1][0] = -fDx.getValue(); 149 points[1][0] = -fDx.getValue(); 151 points[1][1] = fDy.getValue(); 150 points[1][1] = fDy.getValue(); 152 points[1][2] = -fDz.getValue(); 151 points[1][2] = -fDz.getValue(); 153 152 154 points[2][0] = -fDx.getValue(); 153 points[2][0] = -fDx.getValue(); 155 points[2][1] = -fDy.getValue(); 154 points[2][1] = -fDy.getValue(); 156 points[2][2] = -fDz.getValue(); 155 points[2][2] = -fDz.getValue(); 157 156 158 points[3][0] = fDx.getValue(); 157 points[3][0] = fDx.getValue(); 159 points[3][1] = -fDy.getValue(); 158 points[3][1] = -fDy.getValue(); 160 points[3][2] = -fDz.getValue(); 159 points[3][2] = -fDz.getValue(); 161 160 162 points[4][0] = fDx.getValue(); 161 points[4][0] = fDx.getValue(); 163 points[4][1] = fDy.getValue(); 162 points[4][1] = fDy.getValue(); 164 points[4][2] = fDz.getValue(); 163 points[4][2] = fDz.getValue(); 165 164 166 points[5][0] = -fDx.getValue(); 165 points[5][0] = -fDx.getValue(); 167 points[5][1] = fDy.getValue(); 166 points[5][1] = fDy.getValue(); 168 points[5][2] = fDz.getValue(); 167 points[5][2] = fDz.getValue(); 169 168 170 points[6][0] = -fDx.getValue(); 169 points[6][0] = -fDx.getValue(); 171 points[6][1] = -fDy.getValue(); 170 points[6][1] = -fDy.getValue(); 172 points[6][2] = fDz.getValue(); 171 points[6][2] = fDz.getValue(); 173 172 174 points[7][0] = fDx.getValue(); 173 points[7][0] = fDx.getValue(); 175 points[7][1] = -fDy.getValue(); 174 points[7][1] = -fDy.getValue(); 176 points[7][2] = fDz.getValue(); 175 points[7][2] = fDz.getValue(); 177 176 178 float normals[NFACES][3]; 177 float normals[NFACES][3]; 179 //z back. 178 //z back. 180 normals[0][0] = 0 ; normals[0][1] = 0; 179 normals[0][0] = 0 ; normals[0][1] = 0; normals [0][2] = -1; 181 //z front. 180 //z front. 182 normals[1][0] = 0 ; normals[1][1] = 0; 181 normals[1][0] = 0 ; normals[1][1] = 0; normals [1][2] = 1; 183 //y up. 182 //y up. 184 normals[2][0] = 0 ; normals[2][1] = 1; 183 normals[2][0] = 0 ; normals[2][1] = 1; normals [2][2] = 0; 185 //x left. 184 //x left. 186 normals[3][0] = -1 ; normals[3][1] = 0; 185 normals[3][0] = -1 ; normals[3][1] = 0; normals [3][2] = 0; 187 //y down. 186 //y down. 188 normals[4][0] = 0 ; normals[4][1] = -1; 187 normals[4][0] = 0 ; normals[4][1] = -1; normals [4][2] = 0; 189 //x right. 188 //x right. 190 normals[5][0] = 1 ; normals[5][1] = 0; 189 normals[5][0] = 1 ; normals[5][1] = 0; normals [5][2] = 0; 191 190 192 float x,y,z; 191 float x,y,z; 193 int index; 192 int index; 194 for (int nf=0;nf<NFACES;nf++) { 193 for (int nf=0;nf<NFACES;nf++) { 195 beginShape(action,TRIANGLE_FAN); 194 beginShape(action,TRIANGLE_FAN); 196 index = indices[nf * 5]; 195 index = indices[nf * 5]; 197 x = points[index][0]; 196 x = points[index][0]; 198 y = points[index][1]; 197 y = points[index][1]; 199 z = points[index][2]; 198 z = points[index][2]; 200 GEN_VERTEX(pv,x,y,z,0.0,0.0,normals[nf][0] 199 GEN_VERTEX(pv,x,y,z,0.0,0.0,normals[nf][0],normals[nf][1],normals[nf][2]); 201 index = indices[nf * 5 + 1]; 200 index = indices[nf * 5 + 1]; 202 x = points[index][0]; 201 x = points[index][0]; 203 y = points[index][1]; 202 y = points[index][1]; 204 z = points[index][2]; 203 z = points[index][2]; 205 GEN_VERTEX(pv,x,y,z,0.0,0.0,normals[nf][0] 204 GEN_VERTEX(pv,x,y,z,0.0,0.0,normals[nf][0],normals[nf][1],normals[nf][2]); 206 index = indices[nf * 5 + 2]; 205 index = indices[nf * 5 + 2]; 207 x = points[index][0]; 206 x = points[index][0]; 208 y = points[index][1]; 207 y = points[index][1]; 209 z = points[index][2]; 208 z = points[index][2]; 210 GEN_VERTEX(pv,x,y,z,0.0,0.0,normals[nf][0] 209 GEN_VERTEX(pv,x,y,z,0.0,0.0,normals[nf][0],normals[nf][1],normals[nf][2]); 211 index = indices[nf * 5 + 3]; 210 index = indices[nf * 5 + 3]; 212 x = points[index][0]; 211 x = points[index][0]; 213 y = points[index][1]; 212 y = points[index][1]; 214 z = points[index][2]; 213 z = points[index][2]; 215 GEN_VERTEX(pv,x,y,z,0.0,0.0,normals[nf][0] 214 GEN_VERTEX(pv,x,y,z,0.0,0.0,normals[nf][0],normals[nf][1],normals[nf][2]); 216 endShape(); 215 endShape(); 217 } 216 } 218 } 217 } 219 218 220 // getChildren 219 // getChildren 221 SoChildList *SoBox::getChildren() const { 220 SoChildList *SoBox::getChildren() const { 222 return children; 221 return children; 223 } 222 } 224 223 225 224 226 // computeBBox 225 // computeBBox 227 void SoBox::computeBBox(SoAction *, SbBox3f &b 226 void SoBox::computeBBox(SoAction *, SbBox3f &box, SbVec3f ¢er ){ 228 SbVec3f vmin(-fDx.getValue(),-fDy.getValue() 227 SbVec3f vmin(-fDx.getValue(),-fDy.getValue(),-fDz.getValue()), 229 vmax( fDx.getValue(), fDy.getValue() 228 vmax( fDx.getValue(), fDy.getValue(), fDz.getValue()); 230 center.setValue(0,0,0); 229 center.setValue(0,0,0); 231 box.setBounds(vmin,vmax); 230 box.setBounds(vmin,vmax); 232 } 231 } 233 232 234 233 235 234 236 235 237 // updateChildren 236 // updateChildren 238 void SoBox::updateChildren() { 237 void SoBox::updateChildren() { 239 238 240 239 241 // Redraw the G4Box.... 240 // Redraw the G4Box.... 242 241 243 assert(children->getLength()==1); 242 assert(children->getLength()==1); 244 SoSeparator *sep = (SoS 243 SoSeparator *sep = (SoSeparator *) ( *children)[0]; 245 SoScale *scale = (SoS 244 SoScale *scale = (SoScale *)( sep->getChild(0)); 246 //SoCube *cube = (S 245 //SoCube *cube = (SoCube *)( sep->getChild(1)); 247 scale->scaleFactor.setValue(fDx.getValue(), 246 scale->scaleFactor.setValue(fDx.getValue(), fDy.getValue(), fDz.getValue()); 248 } 247 } 249 248 250 // generateChildren 249 // generateChildren 251 void SoBox::generateChildren() { 250 void SoBox::generateChildren() { 252 251 253 // A box consists of a set of scale factors 252 // A box consists of a set of scale factors and a 254 // cube. 253 // cube. 255 254 256 assert(children->getLength() ==0); 255 assert(children->getLength() ==0); 257 SoSeparator *sep = new SoS 256 SoSeparator *sep = new SoSeparator(); 258 SoScale *scale = new SoS 257 SoScale *scale = new SoScale(); 259 SoCube *cube = new SoC 258 SoCube *cube = new SoCube(); 260 259 261 sep->addChild(scale); 260 sep->addChild(scale); 262 sep->addChild(cube); 261 sep->addChild(cube); 263 children->append(sep); 262 children->append(sep); 264 } 263 } 265 264 266 // generateAlternateRep 265 // generateAlternateRep 267 void SoBox::generateAlternateRep() { 266 void SoBox::generateAlternateRep() { 268 267 269 // This routine sets the alternate represent 268 // This routine sets the alternate representation to the child 270 // list of this mode. 269 // list of this mode. 271 270 272 if (children->getLength() == 0) generateChil 271 if (children->getLength() == 0) generateChildren(); 273 updateChildren(); 272 updateChildren(); 274 alternateRep.setValue((SoSeparator *) ( *ch 273 alternateRep.setValue((SoSeparator *) ( *children)[0]); 275 } 274 } 276 275 277 // clearAlternateRep 276 // clearAlternateRep 278 void SoBox::clearAlternateRep() { 277 void SoBox::clearAlternateRep() { 279 alternateRep.setValue(NULL); 278 alternateRep.setValue(NULL); 280 } 279 } >> 280 >> 281 #endif 281 282