Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4Transportation.cc,v 1.60.4.2 2007/02/15 19:02:57 japost Exp $ >> 28 // GEANT4 tag $Name: geant4-08-03-patch-01 $ 27 // 29 // 28 // ------------------------------------------- 30 // ------------------------------------------------------------ 29 // GEANT 4 include file implementation 31 // GEANT 4 include file implementation 30 // 32 // 31 // ------------------------------------------- 33 // ------------------------------------------------------------ 32 // 34 // 33 // This class is a process responsible for the 35 // This class is a process responsible for the transportation of 34 // a particle, ie the geometrical propagation 36 // a particle, ie the geometrical propagation that encounters the 35 // geometrical sub-volumes of the detectors. 37 // geometrical sub-volumes of the detectors. 36 // 38 // 37 // It is also tasked with the key role of prop << 39 // It is also tasked with part of updating the "safety". 38 // which will be used to update the post-ste << 39 // 40 // 40 // =========================================== 41 // ======================================================================= >> 42 // Modified: >> 43 // 19 Jan 2006, P.MoraDeFreitas: Fix for suspended tracks (StartTracking) >> 44 // 11 Aug 2004, M.Asai: Add G4VSensitiveDetector* for updating stepPoint. >> 45 // 21 June 2003, J.Apostolakis: Calling field manager with >> 46 // track, to enable it to configure its accuracy >> 47 // 13 May 2003, J.Apostolakis: Zero field areas now taken into >> 48 // account correclty in all cases (thanks to W Pokorski). >> 49 // 29 June 2001, J.Apostolakis, D.Cote-Ahern, P.Gumplinger: >> 50 // correction for spin tracking >> 51 // 20 Febr 2001, J.Apostolakis: update for new FieldTrack >> 52 // 22 Sept 2000, V.Grichine: update of Kinetic Energy >> 53 // 9 June 1999, J.Apostolakis & S.Giani: protect full relocation >> 54 // in DEBUG for track starting on surface that >> 55 // goes step < tolerance. 41 // Created: 19 March 1997, J. Apostolakis 56 // Created: 19 March 1997, J. Apostolakis 42 // =========================================== 57 // ======================================================================= 43 58 44 #include "G4Transportation.hh" 59 #include "G4Transportation.hh" 45 #include "G4TransportationProcessType.hh" << 46 #include "G4TransportationLogger.hh" << 47 << 48 #include "G4PhysicalConstants.hh" << 49 #include "G4SystemOfUnits.hh" << 50 #include "G4ProductionCutsTable.hh" 60 #include "G4ProductionCutsTable.hh" 51 #include "G4ParticleTable.hh" 61 #include "G4ParticleTable.hh" 52 << 62 #include "G4ChordFinder.hh" 53 #include "G4ChargeState.hh" << 54 #include "G4EquationOfMotion.hh" << 55 << 56 #include "G4FieldManagerStore.hh" << 57 << 58 #include "G4Navigator.hh" << 59 #include "G4PropagatorInField.hh" << 60 #include "G4TransportationManager.hh" << 61 << 62 #include "G4TransportationParameters.hh" << 63 << 64 class G4VSensitiveDetector; 63 class G4VSensitiveDetector; 65 64 66 G4bool G4Transportation::fUseMagneticMoment=fa << 67 G4bool G4Transportation::fUseGravity= false; << 68 G4bool G4Transportation::fSilenceLooperWarning << 69 << 70 ////////////////////////////////////////////// 65 ////////////////////////////////////////////////////////////////////////// 71 // 66 // 72 // Constructor 67 // Constructor 73 68 74 G4Transportation::G4Transportation( G4int verb << 69 G4Transportation::G4Transportation( G4int verboseLevel ) 75 : G4VProcess( aName, fTransportation ), << 70 : G4VProcess( G4String("Transportation"), fTransportation ), 76 fFieldExertedForce( false ), << 71 fParticleIsLooping( false ), 77 fPreviousSftOrigin( 0.,0.,0. ), << 72 fPreviousSftOrigin (0.,0.,0.), 78 fPreviousSafety( 0.0 ), << 73 fPreviousSafety ( 0.0 ), 79 fEndPointDistance( -1.0 ), << 74 fThreshold_Warning_Energy( 100 * MeV ), 80 fShortStepOptimisation( false ) // Old def << 75 fThreshold_Important_Energy( 250 * MeV ), >> 76 fThresholdTrials( 10 ), >> 77 fUnimportant_Energy( 1 * MeV ), >> 78 fNoLooperTrials(0), >> 79 fSumEnergyKilled( 0.0 ), fMaxEnergyKilled( 0.0 ), >> 80 fVerboseLevel( verboseLevel ) 81 { 81 { 82 SetProcessSubType(static_cast<G4int>(TRANSPO << 83 pParticleChange= &fParticleChange; // Requ << 84 SetVerboseLevel(verbosity); << 85 << 86 G4TransportationManager* transportMgr ; 82 G4TransportationManager* transportMgr ; 87 83 88 transportMgr = G4TransportationManager::GetT 84 transportMgr = G4TransportationManager::GetTransportationManager() ; 89 85 90 fLinearNavigator = transportMgr->GetNavigato 86 fLinearNavigator = transportMgr->GetNavigatorForTracking() ; 91 87 92 fFieldPropagator = transportMgr->GetPropagat << 88 // fGlobalFieldMgr = transportMgr->GetFieldManager() ; 93 89 94 fpSafetyHelper = transportMgr->GetSafetyHe << 90 fFieldPropagator = transportMgr->GetPropagatorInField() ; 95 << 96 fpLogger = new G4TransportationLogger("G4Tra << 97 << 98 if( G4TransportationParameters::Exists() ) << 99 { << 100 auto trParams= G4TransportationParameters: << 101 << 102 SetThresholdWarningEnergy( trParams->GetW << 103 SetThresholdImportantEnergy( trParams->Get << 104 SetThresholdTrials( trParams->GetNumberOfT << 105 G4Transportation::fSilenceLooperWarnings= << 106 } << 107 else { << 108 SetHighLooperThresholds(); << 109 // Use the old defaults: Warning = 100 Me << 110 } << 111 91 112 PushThresholdsToLogger(); << 92 // Cannot determine whether a field exists here, 113 // Should be done by Set methods in SetHighL << 93 // because it would only work if the field manager has informed 114 << 94 // about the detector's field before this transportation process 115 static G4ThreadLocal G4TouchableHandle* pNul << 95 // is constructed. 116 if ( !pNullTouchableHandle) << 96 // Instead later the method DoesGlobalFieldExist() is called 117 { << 97 118 pNullTouchableHandle = new G4TouchableHand << 98 // Small memory leak from this new 119 } << 99 // fCurrentTouchableHandle = new G4TouchableHistory(); 120 fCurrentTouchableHandle = *pNullTouchableHan << 100 // Fixes: 121 // Points to (G4VTouchable*) 0 << 101 // 1) static G4TouchableHistory sfNullTouchableHistory = new G4TouchableHistory(); >> 102 // fCurrentTouchableHandle = new G4TouchableHandle( sfNullTouchableHistory ); >> 103 // 2) set it to (G4TouchableHistory*) 0 >> 104 // fCurrentTouchableHandle = new G4TouchableHandle( (G4TouchableHistory*) 0 ); >> 105 // 3) Below: >> 106 static G4TouchableHandle nullTouchableHandle; // Points to (G4VTouchable*) 0 >> 107 fCurrentTouchableHandle = nullTouchableHandle; 122 108 123 << 109 fEndGlobalTimeComputed = false; 124 #ifdef G4VERBOSE << 110 fCandidateEndGlobalTime = 0; 125 if( verboseLevel > 0) << 126 { << 127 G4cout << " G4Transportation constructor> << 128 if ( fShortStepOptimisation ) { G4cout < << 129 else { G4cout < << 130 } << 131 #endif << 132 } 111 } 133 112 134 ////////////////////////////////////////////// 113 ////////////////////////////////////////////////////////////////////////// 135 114 136 G4Transportation::~G4Transportation() 115 G4Transportation::~G4Transportation() 137 { 116 { 138 if( fSumEnergyKilled > 0.0 ) << 139 { << 140 PrintStatistics( G4cout ); << 141 } << 142 delete fpLogger; << 143 } << 144 117 145 ////////////////////////////////////////////// << 118 // --- Alternative code to delete 'junk data' in touchable handle 146 << 119 // ** Corresponds to the case that the constructor has 147 void << 120 // fCurrentTouchableHandle = new G4TouchableHistory(); 148 G4Transportation::PrintStatistics( std::ostrea << 121 // ** Likely incorrect - as at the end of the simulation 149 { << 122 // the handle no longer holds the original 'null' history 150 outStr << " G4Transportation: Statistics fo << 123 // G4VTouchable* pTouchable= fCurrentTouchableHandle(); // Incorrect 151 if( fSumEnergyKilled > 0.0 || fNumLoopersKi << 124 // delete pTouchable; // Incorrect 152 { << 125 153 outStr << " Sum of energy of looping t << 126 if( (fVerboseLevel > 0) && (fSumEnergyKilled > 0.0 ) ){ 154 << fSumEnergyKilled / CLHEP::MeV << 127 G4cout << " G4Transportation: Statistics for looping particles " << G4endl; 155 << " from " << fNumLoopersKilled << 128 G4cout << " Sum of energy of loopers killed: " << fSumEnergyKilled << G4endl; 156 << " Sum of energy of non-elect << 129 G4cout << " Max energy of loopers killed: " << fMaxEnergyKilled << G4endl; 157 << fSumEnergyKilled_NonElectron / << 130 } 158 << " from " << fNumLoopersKilled << 159 << G4endl; << 160 outStr << " Max energy of *any type* << 161 << " its PDG was " << fMaxEner << 162 if( fMaxEnergyKilled_NonElectron > 0.0 ) << 163 { << 164 outStr << " Max energy of non-elect << 165 << fMaxEnergyKilled_NonElectro << 166 << " its PDG was " << fMaxE << 167 } << 168 if( fMaxEnergySaved > 0.0 ) << 169 { << 170 outStr << " Max energy of loopers ' << 171 outStr << " Sum of energy of looper << 172 << fSumEnergySaved << G4endl; << 173 outStr << " Sum of energy of unstab << 174 << fSumEnergyUnstableSaved << << 175 } << 176 } << 177 else << 178 { << 179 outStr << " No looping tracks found or k << 180 } << 181 } 131 } 182 132 183 ////////////////////////////////////////////// 133 ////////////////////////////////////////////////////////////////////////// 184 // 134 // 185 // Responsibilities: 135 // Responsibilities: 186 // Find whether the geometry limits the Ste 136 // Find whether the geometry limits the Step, and to what length 187 // Calculate the new value of the safety an 137 // Calculate the new value of the safety and return it. 188 // Store the final time, position and momen 138 // Store the final time, position and momentum. 189 139 190 G4double G4Transportation::AlongStepGetPhysica << 140 G4double G4Transportation:: 191 const G4Track& track, << 141 AlongStepGetPhysicalInteractionLength( const G4Track& track, 192 G4double, // previousStepSize << 142 G4double, // previousStepSize 193 G4double currentMinimumStep, G4double& curre << 143 G4double currentMinimumStep, 194 G4GPILSelection* selection) << 144 G4double& currentSafety, >> 145 G4GPILSelection* selection ) 195 { 146 { 196 // Initial actions moved to StartTrack() << 147 G4double geometryStepLength, newSafety ; >> 148 fParticleIsLooping = false ; >> 149 >> 150 // Initial actions moved to StartTrack() 197 // -------------------------------------- 151 // -------------------------------------- 198 // Note: in case another process changes tou 152 // Note: in case another process changes touchable handle 199 // it will be necessary to add here (for << 153 // it will be necessary to add here (for all steps) 200 // fCurrentTouchableHandle = aTrack->GetTouc 154 // fCurrentTouchableHandle = aTrack->GetTouchableHandle(); 201 155 202 // GPILSelection is set to defaule value of 156 // GPILSelection is set to defaule value of CandidateForSelection 203 // It is a return value 157 // It is a return value 204 // 158 // 205 *selection = CandidateForSelection; << 159 *selection = CandidateForSelection ; 206 160 207 // Get initial Energy/Momentum of the track 161 // Get initial Energy/Momentum of the track 208 // 162 // 209 const G4ThreeVector startPosition = track << 163 const G4DynamicParticle* pParticle = track.GetDynamicParticle() ; 210 const G4ThreeVector startMomentumDir = track << 164 const G4ParticleDefinition* pParticleDef = pParticle->GetDefinition() ; >> 165 G4ThreeVector startMomentumDir = pParticle->GetMomentumDirection() ; >> 166 G4ThreeVector startPosition = track.GetPosition() ; >> 167 >> 168 // G4double theTime = track.GetGlobalTime() ; 211 169 212 // The Step Point safety can be limited by o << 170 // The Step Point safety can be limited by other geometries and/or the 213 // assumptions of any process - it's not alw 171 // assumptions of any process - it's not always the geometrical safety. 214 // We calculate the starting point's isotrop 172 // We calculate the starting point's isotropic safety here. >> 173 // >> 174 G4ThreeVector OriginShift = startPosition - fPreviousSftOrigin ; >> 175 G4double MagSqShift = OriginShift.mag2() ; >> 176 if( MagSqShift >= sqr(fPreviousSafety) ) 215 { 177 { 216 const G4double MagSqShift = (startPosition << 178 currentSafety = 0.0 ; 217 << 179 } 218 if(MagSqShift >= sqr(fPreviousSafety)) << 180 else 219 currentSafety = 0.0; << 181 { 220 else << 182 currentSafety = fPreviousSafety - std::sqrt(MagSqShift) ; 221 currentSafety = fPreviousSafety - std::s << 222 } 183 } 223 184 224 // Is the particle charged or has it a magne << 185 // Is the particle charged ? 225 // 186 // 226 const G4DynamicParticle* pParticle = track.G << 187 G4double particleCharge = pParticle->GetCharge() ; 227 188 228 const G4double particleMass = pParticle->G << 189 fGeometryLimitedStep = false ; 229 const G4double particleCharge = pParticle->G << 190 // fEndGlobalTimeComputed = false ; 230 const G4double kineticEnergy = pParticle->Ge << 231 << 232 const G4double magneticMoment = pParticle << 233 const G4ThreeVector particleSpin = pParticle << 234 191 235 // There is no need to locate the current vo 192 // There is no need to locate the current volume. It is Done elsewhere: 236 // On track construction << 193 // On track construction 237 // By the tracking, after all AlongStepDoI 194 // By the tracking, after all AlongStepDoIts, in "Relocation" 238 195 239 // Check if the particle has a force, EM or << 196 // Check whether the particle have an (EM) field force exerting upon it 240 // 197 // >> 198 G4FieldManager* fieldMgr=0; >> 199 G4bool fieldExertsForce = false ; >> 200 if( (particleCharge != 0.0) ) >> 201 { >> 202 fieldMgr= fFieldPropagator->FindAndSetFieldManager( track.GetVolume() ); >> 203 if (fieldMgr != 0) { >> 204 // If the field manager has no field, there is no field ! >> 205 fieldExertsForce = (fieldMgr->GetDetectorField() != 0); >> 206 } >> 207 } >> 208 >> 209 // G4cout << " G4Transport: field exerts force= " << fieldExertsForce >> 210 // << " fieldMgr= " << fieldMgr << G4endl; >> 211 >> 212 // Choose the calculation of the transportation: Field or not >> 213 // >> 214 if( !fieldExertsForce ) >> 215 { >> 216 G4double linearStepLength ; >> 217 if( currentMinimumStep <= currentSafety ) >> 218 { >> 219 // The Step is guaranteed to be taken >> 220 // >> 221 geometryStepLength = currentMinimumStep ; >> 222 fGeometryLimitedStep = false ; >> 223 } >> 224 else >> 225 { >> 226 // Find whether the straight path intersects a volume >> 227 // >> 228 linearStepLength = fLinearNavigator->ComputeStep( startPosition, >> 229 startMomentumDir, >> 230 currentMinimumStep, >> 231 newSafety) ; >> 232 // Remember last safety origin & value. >> 233 // >> 234 fPreviousSftOrigin = startPosition ; >> 235 fPreviousSafety = newSafety ; >> 236 >> 237 // The safety at the initial point has been re-calculated: >> 238 // >> 239 currentSafety = newSafety ; >> 240 >> 241 if( linearStepLength <= currentMinimumStep) >> 242 { >> 243 // The geometry limits the Step size (an intersection was found.) >> 244 // >> 245 geometryStepLength = linearStepLength ; >> 246 fGeometryLimitedStep = true ; >> 247 } >> 248 else >> 249 { >> 250 // The full Step is taken. >> 251 // >> 252 geometryStepLength = currentMinimumStep ; >> 253 fGeometryLimitedStep = false ; >> 254 } >> 255 } >> 256 endpointDistance = geometryStepLength ; 241 257 242 G4bool eligibleEM = << 258 // Calculate final position 243 (particleCharge != 0.0) || ((magneticMomen << 259 // 244 G4bool eligibleGrav = (particleMass != 0.0) << 260 fTransportEndPosition = startPosition+geometryStepLength*startMomentumDir ; 245 << 246 fFieldExertedForce = false; << 247 << 248 if(eligibleEM || eligibleGrav) << 249 { << 250 if(G4FieldManager* fieldMgr = << 251 fFieldPropagator->FindAndSetFieldMana << 252 { << 253 // User can configure the field Manager << 254 fieldMgr->ConfigureForTrack(&track); << 255 // Called here to allow a transition fro << 256 // to finite field (non-zero pointer). << 257 << 258 // If the field manager has no field ptr << 259 // by definition ( = there is no field << 260 if(const G4Field* ptrField = fieldMgr->G << 261 fFieldExertedForce = << 262 eligibleEM || (eligibleGrav && ptrFi << 263 } << 264 } << 265 << 266 G4double geometryStepLength = currentMinimum << 267 << 268 if(currentMinimumStep == 0.0) << 269 { << 270 fEndPointDistance = 0.0; << 271 fGeometryLimitedStep = false; // Old cod << 272 // Changed to avoid problems when setting << 273 fMomentumChanged = false; << 274 fParticleIsLooping = false; << 275 fEndGlobalTimeComputed = false; << 276 fTransportEndPosition = startPosition << 277 fTransportEndMomentumDir = startMomentum << 278 fTransportEndKineticEnergy = kineticEnergy << 279 fTransportEndSpin = particleSpin; << 280 } << 281 else if(!fFieldExertedForce) << 282 { << 283 fGeometryLimitedStep = false; << 284 if(geometryStepLength > currentSafety || ! << 285 { << 286 const G4double linearStepLength = fLinea << 287 startPosition, startMomentumDir, curre << 288 << 289 if(linearStepLength <= currentMinimumSte << 290 { << 291 geometryStepLength = linearStepLength; << 292 fGeometryLimitedStep = true; << 293 } << 294 // Remember last safety origin & value. << 295 // << 296 fPreviousSftOrigin = startPosition; << 297 fPreviousSafety = currentSafety; << 298 fpSafetyHelper->SetCurrentSafety(current << 299 } << 300 << 301 fEndPointDistance = geometryStepLength; << 302 << 303 fMomentumChanged = false; << 304 fParticleIsLooping = false; << 305 fEndGlobalTimeComputed = false; << 306 fTransportEndPosition = << 307 startPosition + geometryStepLength * sta << 308 fTransportEndMomentumDir = startMomentum << 309 fTransportEndKineticEnergy = kineticEnergy << 310 fTransportEndSpin = particleSpin; << 311 } << 312 else // A field exerts force << 313 { << 314 const auto pParticleDef = pParticle->Ge << 315 const auto particlePDGSpin = pParticleDef- << 316 const auto particlePDGMagM = pParticleDef- << 317 << 318 auto equationOfMotion = fFieldPropagator-> << 319 << 320 // The charge can change (dynamic), theref << 321 // << 322 equationOfMotion->SetChargeMomentumMass( << 323 G4ChargeState(particleCharge, magneticMo << 324 pParticle->GetTotalMomentum(), particleM << 325 << 326 G4FieldTrack aFieldTrack(startPosition, << 327 track.GetGlobalTi << 328 startMomentumDir, << 329 particleCharge, p << 330 0.0, // Length a << 331 particlePDGSpin); << 332 << 333 // Do the Transport in the field (non rect << 334 // << 335 const G4double lengthAlongCurve = fFieldPr << 336 aFieldTrack, currentMinimumStep, current << 337 kineticEnergy < fThreshold_Important_Ene << 338 << 339 if(lengthAlongCurve < geometryStepLength) << 340 geometryStepLength = lengthAlongCurve; << 341 << 342 // Remember last safety origin & value. << 343 // << 344 fPreviousSftOrigin = startPosition; << 345 fPreviousSafety = currentSafety; << 346 fpSafetyHelper->SetCurrentSafety(currentSa << 347 261 348 fGeometryLimitedStep = fFieldPropagator->I << 262 // Momentum direction, energy and polarisation are unchanged by transport 349 // << 263 // 350 // It is possible that step was reduced in << 264 fTransportEndMomentumDir = startMomentumDir ; 351 // previous zero steps. To cope with case << 265 fTransportEndKineticEnergy = track.GetKineticEnergy() ; 352 // in full, we must rely on PiF to obtain << 266 fTransportEndSpin = track.GetPolarization(); >> 267 fParticleIsLooping = false ; >> 268 fMomentumChanged = false ; >> 269 fEndGlobalTimeComputed = false ; >> 270 } >> 271 else // A field exerts force >> 272 { >> 273 G4double momentumMagnitude = pParticle->GetTotalMomentum() ; >> 274 G4ThreeVector EndUnitMomentum ; >> 275 G4double lengthAlongCurve ; >> 276 G4double restMass = pParticleDef->GetPDGMass() ; >> 277 >> 278 fFieldPropagator->SetChargeMomentumMass( particleCharge, // in e+ units >> 279 momentumMagnitude, // in Mev/c >> 280 restMass ) ; 353 281 354 G4bool changesEnergy = << 282 // Message the field Manager, to configure it for this track 355 fFieldPropagator->GetCurrentFieldManager << 283 fieldMgr->ConfigureForTrack( &track ); 356 284 357 fMomentumChanged = true; << 285 G4ThreeVector spin = track.GetPolarization() ; 358 fParticleIsLooping = fFieldPropagator->IsP << 286 G4FieldTrack aFieldTrack = G4FieldTrack( startPosition, >> 287 track.GetMomentumDirection(), >> 288 0.0, >> 289 track.GetKineticEnergy(), >> 290 restMass, >> 291 track.GetVelocity(), >> 292 track.GetGlobalTime(), // Lab. >> 293 track.GetProperTime(), // Part. >> 294 &spin ) ; >> 295 if( currentMinimumStep > 0 ) >> 296 { >> 297 // Do the Transport in the field (non recti-linear) >> 298 // >> 299 lengthAlongCurve = fFieldPropagator->ComputeStep( aFieldTrack, >> 300 currentMinimumStep, >> 301 currentSafety, >> 302 track.GetVolume() ) ; >> 303 if( lengthAlongCurve < currentMinimumStep) >> 304 { >> 305 geometryStepLength = lengthAlongCurve ; >> 306 fGeometryLimitedStep = true ; >> 307 } >> 308 else >> 309 { >> 310 geometryStepLength = currentMinimumStep ; >> 311 fGeometryLimitedStep = false ; >> 312 } >> 313 } >> 314 else >> 315 { >> 316 geometryStepLength = lengthAlongCurve= 0.0 ; >> 317 fGeometryLimitedStep = false ; >> 318 } 359 319 360 fEndGlobalTimeComputed = changesEnergy; << 320 // Remember last safety origin & value. 361 fTransportEndPosition = aFieldTrack.Get << 321 // 362 fTransportEndMomentumDir = aFieldTrack.Get << 322 fPreviousSftOrigin = startPosition ; >> 323 fPreviousSafety = currentSafety ; >> 324 >> 325 // Get the End-Position and End-Momentum (Dir-ection) >> 326 // >> 327 fTransportEndPosition = aFieldTrack.GetPosition() ; 363 328 364 // G4cout << " G4Transport: End of step pM << 329 // Momentum: Magnitude and direction can be changed too now ... >> 330 // >> 331 fMomentumChanged = true ; >> 332 fTransportEndMomentumDir = aFieldTrack.GetMomentumDir() ; 365 333 366 fEndPointDistance = (fTransportEndPositio << 334 fTransportEndKineticEnergy = aFieldTrack.GetKineticEnergy() ; 367 335 368 // Ignore change in energy for fields that << 336 if( fFieldPropagator->GetCurrentFieldManager()->DoesFieldChangeEnergy() ) 369 // This hides the integration error, but g << 337 { 370 fTransportEndKineticEnergy = << 338 // If the field can change energy, then the time must be integrated 371 changesEnergy ? aFieldTrack.GetKineticEn << 339 // - so this should have been updated 372 fTransportEndSpin = aFieldTrack.GetSpin(); << 340 // >> 341 fCandidateEndGlobalTime = aFieldTrack.GetLabTimeOfFlight(); >> 342 fEndGlobalTimeComputed = true; 373 343 374 if(fEndGlobalTimeComputed) << 344 // was ( fCandidateEndGlobalTime != track.GetGlobalTime() ); 375 { << 345 // a cleaner way is to have FieldTrack knowing whether time is updated. 376 // If the field can change energy, then << 346 } 377 // - so this should have been updated << 347 else 378 // << 348 { 379 fCandidateEndGlobalTime = aFieldTrack.Ge << 349 // The energy should be unchanged by field transport, >> 350 // - so the time changed will be calculated elsewhere >> 351 // >> 352 fEndGlobalTimeComputed = false; 380 353 381 // was ( fCandidateEndGlobalTime != trac << 354 // Check that the integration preserved the energy 382 // a cleaner way is to have FieldTrack k << 355 // - and if not correct this! 383 } << 356 G4double startEnergy= track.GetKineticEnergy(); 384 #if defined(G4VERBOSE) || defined(G4DEBUG_TRAN << 357 G4double endEnergy= fTransportEndKineticEnergy; 385 else << 358 386 { << 359 static G4int no_inexact_steps=0, no_large_ediff; 387 // The energy should be unchanged by fie << 360 G4double absEdiff = std::fabs(startEnergy- endEnergy); 388 // - so the time changed will be calc << 361 if( absEdiff > perMillion * endEnergy ) 389 // << 362 { 390 // Check that the integration preserved << 363 no_inexact_steps++; 391 // - and if not correct this! << 364 // Possible statistics keeping here ... 392 G4double startEnergy = kineticEnergy; << 365 } 393 G4double endEnergy = fTransportEndKine << 366 if( fVerboseLevel > 1 ) 394 << 395 static G4ThreadLocal G4int no_large_edif << 396 if(verboseLevel > 1) << 397 { << 398 if(std::fabs(startEnergy - endEnergy) << 399 { 367 { 400 static G4ThreadLocal G4int no_warnin << 368 if( std::fabs(startEnergy- endEnergy) > perThousand * endEnergy ) 401 moduloFac << 402 no_large_ediff++; << 403 if((no_large_ediff % warnModulo) == << 404 { 369 { 405 no_warnings++; << 370 static G4int no_warnings= 0, warnModulo=1, moduloFactor= 10; 406 std::ostringstream message; << 371 no_large_ediff ++; 407 message << "Energy change in Step << 372 if( (no_large_ediff% warnModulo) == 0 ) 408 << G4endl << " Relativ << 409 << std::setw(15) << (endEn << 410 << G4endl << " Startin << 411 << startEnergy / MeV << " << 412 << " Ending E= " << << 413 << " MeV " << G4endl << 414 << "Energy has been correc << 415 << " field propagation par << 416 if((verboseLevel > 2) || (no_warni << 417 (no_large_ediff == warnModulo * << 418 { << 419 message << "These include Epsilo << 420 << G4endl << 421 << "which determine frac << 422 "integrated quantitie << 423 << G4endl << 424 << "Note also the influe << 425 "integration steps." << 426 << G4endl; << 427 } << 428 message << "Bad 'endpoint'. Energy << 429 << G4endl << "Has occurred << 430 << " times."; << 431 G4Exception("G4Transportation::Alo << 432 JustWarning, message); << 433 if(no_large_ediff == warnModulo * << 434 { 373 { 435 warnModulo *= moduloFactor; << 374 no_warnings++; >> 375 G4cout << "WARNING - G4Transportation::AlongStepGetPIL() " >> 376 << " Energy change in Step is above 1^-3 relative value. " << G4endl >> 377 << " Relative change in 'tracking' step = " >> 378 << std::setw(15) << (endEnergy-startEnergy)/startEnergy << G4endl >> 379 << " Starting E= " << std::setw(12) << startEnergy / MeV << " MeV " << G4endl >> 380 << " Ending E= " << std::setw(12) << endEnergy / MeV << " MeV " << G4endl; >> 381 G4cout << " Energy has been corrected -- however, review" >> 382 << " field propagation parameters for accuracy." << G4endl; >> 383 if( (fVerboseLevel > 2 ) || (no_warnings<4) || (no_large_ediff == warnModulo * moduloFactor) ){ >> 384 G4cout << " These include EpsilonStepMax(/Min) in G4FieldManager " >> 385 << " which determine fractional error per step for integrated quantities. " << G4endl >> 386 << " Note also the influence of the permitted number of integration steps." >> 387 << G4endl; >> 388 } >> 389 G4cerr << "ERROR - G4Transportation::AlongStepGetPIL()" << G4endl >> 390 << " Bad 'endpoint'. Energy change detected" >> 391 << " and corrected. " >> 392 << " Has occurred already " >> 393 << no_large_ediff << " times." << G4endl; >> 394 if( no_large_ediff == warnModulo * moduloFactor ) >> 395 { >> 396 warnModulo *= moduloFactor; >> 397 } 436 } 398 } 437 } 399 } 438 } << 400 } // end of if (fVerboseLevel) 439 } // end of if (verboseLevel) << 401 440 } << 402 // Correct the energy for fields that conserve it 441 #endif << 403 // This - hides the integration error >> 404 // - but gives a better physical answer >> 405 fTransportEndKineticEnergy= track.GetKineticEnergy(); >> 406 } >> 407 >> 408 fTransportEndSpin = aFieldTrack.GetSpin(); >> 409 fParticleIsLooping = fFieldPropagator->IsParticleLooping() ; >> 410 endpointDistance = (fTransportEndPosition - startPosition).mag() ; >> 411 } >> 412 >> 413 // If we are asked to go a step length of 0, and we are on a boundary >> 414 // then a boundary will also limit the step -> we must flag this. >> 415 // >> 416 if( currentMinimumStep == 0.0 ) >> 417 { >> 418 if( currentSafety == 0.0 ) fGeometryLimitedStep = true ; 442 } 419 } 443 420 444 // Update the safety starting from the end-p 421 // Update the safety starting from the end-point, 445 // if it will become negative at the end-poi 422 // if it will become negative at the end-point. 446 // 423 // 447 if(currentSafety < fEndPointDistance) << 424 if( currentSafety < endpointDistance ) 448 { 425 { 449 if(particleCharge != 0.0) << 450 { << 451 G4double endSafety = 426 G4double endSafety = 452 fLinearNavigator->ComputeSafety(fTrans << 427 fLinearNavigator->ComputeSafety( fTransportEndPosition) ; 453 currentSafety = endSafety; << 428 currentSafety = endSafety ; 454 fPreviousSftOrigin = fTransportEndPositi << 429 fPreviousSftOrigin = fTransportEndPosition ; 455 fPreviousSafety = currentSafety; << 430 fPreviousSafety = currentSafety ; 456 fpSafetyHelper->SetCurrentSafety(current << 457 431 458 // Because the Stepping Manager assumes << 432 // Because the Stepping Manager assumes it is from the start point, 459 // add the StepLength 433 // add the StepLength 460 // 434 // 461 currentSafety += fEndPointDistance; << 435 currentSafety += endpointDistance ; 462 436 463 #ifdef G4DEBUG_TRANSPORT << 437 #ifdef G4DEBUG_TRANSPORT 464 G4cout.precision(12); << 438 G4cout.precision(16) ; 465 G4cout << "***G4Transportation::AlongSte << 439 G4cout << "***Transportation::AlongStepGPIL ** " << G4endl ; 466 G4cout << " Called Navigator->ComputeSa << 440 G4cout << " Called Navigator->ComputeSafety at " 467 << " and it returned safety= << 441 << fTransportEndPosition 468 G4cout << " Adding endpoint distance << 442 << " and it returned safety= " << endSafety << G4endl ; 469 << " to obtain pseudo-safety= << 443 G4cout << " Adding endpoint distance " << endpointDistance 470 } << 444 << " we obtain pseudo-safety= " << currentSafety << G4endl ; 471 else << 472 { << 473 G4cout << "***G4Transportation::AlongSte << 474 G4cout << " Avoiding call to ComputeSaf << 475 G4cout << " charge = " << particl << 476 G4cout << " mag moment = " << magneti << 477 #endif 445 #endif 478 } << 446 } 479 } << 480 447 481 fFirstStepInVolume = fNewTrack || fLastStepI << 448 fParticleChange.ProposeTrueStepLength(geometryStepLength) ; 482 fLastStepInVolume = false; << 483 fNewTrack = false; << 484 449 485 fParticleChange.ProposeFirstStepInVolume(fFi << 450 return geometryStepLength ; 486 fParticleChange.ProposeTrueStepLength(geomet << 487 << 488 return geometryStepLength; << 489 } 451 } 490 452 491 ////////////////////////////////////////////// 453 ////////////////////////////////////////////////////////////////////////// 492 // 454 // 493 // Initialize ParticleChange (by setting al 455 // Initialize ParticleChange (by setting all its members equal 494 // to correspond 456 // to corresponding members in G4Track) 495 457 496 G4VParticleChange* G4Transportation::AlongStep 458 G4VParticleChange* G4Transportation::AlongStepDoIt( const G4Track& track, 497 459 const G4Step& stepData ) 498 { 460 { 499 #if defined(G4VERBOSE) || defined(G4DEBUG_TRAN << 461 static G4int noCalls=0; 500 static G4ThreadLocal G4long noCallsASDI=0; << 462 static const G4ParticleDefinition* fOpticalPhoton = 501 noCallsASDI++; << 463 G4ParticleTable::GetParticleTable()->FindParticle("opticalphoton"); 502 #else << 503 #define noCallsASDI 0 << 504 #endif << 505 464 506 if(fGeometryLimitedStep) << 465 noCalls++; 507 { << 508 stepData.GetPostStepPoint()->SetStepStatus << 509 } << 510 466 511 fParticleChange.Initialize(track) ; 467 fParticleChange.Initialize(track) ; 512 468 513 // Code for specific process 469 // Code for specific process 514 // 470 // 515 fParticleChange.ProposePosition(fTransportEn 471 fParticleChange.ProposePosition(fTransportEndPosition) ; 516 fParticleChange.ProposeMomentumDirection(fTr 472 fParticleChange.ProposeMomentumDirection(fTransportEndMomentumDir) ; 517 fParticleChange.ProposeEnergy(fTransportEndK 473 fParticleChange.ProposeEnergy(fTransportEndKineticEnergy) ; 518 fParticleChange.SetMomentumChanged(fMomentum 474 fParticleChange.SetMomentumChanged(fMomentumChanged) ; 519 475 520 fParticleChange.ProposePolarization(fTranspo 476 fParticleChange.ProposePolarization(fTransportEndSpin); 521 << 477 522 G4double deltaTime = 0.0 ; 478 G4double deltaTime = 0.0 ; 523 479 524 // Calculate Lab Time of Flight (ONLY if fi 480 // Calculate Lab Time of Flight (ONLY if field Equations used it!) 525 // G4double endTime = fCandidateEndGlobalT << 481 // G4double endTime = fCandidateEndGlobalTime; 526 // G4double delta_time = endTime - startTime << 482 // G4double delta_time = endTime - startTime; 527 483 528 G4double startTime = track.GetGlobalTime() ; 484 G4double startTime = track.GetGlobalTime() ; 529 485 530 if (!fEndGlobalTimeComputed) 486 if (!fEndGlobalTimeComputed) 531 { 487 { 532 // The time was not integrated .. make th 488 // The time was not integrated .. make the best estimate possible 533 // 489 // 534 G4double initialVelocity = stepData.GetPr << 490 G4double finalVelocity = track.GetVelocity() ; 535 G4double stepLength = track.GetStepL << 491 G4double initialVelocity = stepData.GetPreStepPoint()->GetVelocity() ; >> 492 G4double stepLength = track.GetStepLength() ; 536 493 537 deltaTime= 0.0; // in case initialVeloci 494 deltaTime= 0.0; // in case initialVelocity = 0 538 if ( initialVelocity > 0.0 ) { deltaTime << 495 const G4DynamicParticle* fpDynamicParticle = track.GetDynamicParticle(); 539 << 496 if (fpDynamicParticle->GetDefinition()== fOpticalPhoton) >> 497 { >> 498 // A photon is in the medium of the final point >> 499 // during the step, so it has the final velocity. >> 500 deltaTime = stepLength/finalVelocity ; >> 501 } >> 502 else if (finalVelocity > 0.0) >> 503 { >> 504 G4double meanInverseVelocity ; >> 505 // deltaTime = stepLength/finalVelocity ; >> 506 meanInverseVelocity = 0.5 >> 507 * ( 1.0 / initialVelocity + 1.0 / finalVelocity ) ; >> 508 deltaTime = stepLength * meanInverseVelocity ; >> 509 } >> 510 else if( initialVelocity > 0.0 ) >> 511 { >> 512 deltaTime = stepLength/initialVelocity ; >> 513 } 540 fCandidateEndGlobalTime = startTime + d 514 fCandidateEndGlobalTime = startTime + deltaTime ; 541 fParticleChange.ProposeLocalTime( track. << 542 } 515 } 543 else 516 else 544 { 517 { 545 deltaTime = fCandidateEndGlobalTime - sta 518 deltaTime = fCandidateEndGlobalTime - startTime ; 546 fParticleChange.ProposeGlobalTime( fCandi << 547 } 519 } 548 520 >> 521 fParticleChange.ProposeGlobalTime( fCandidateEndGlobalTime ) ; 549 522 550 // Now Correct by Lorentz factor to get delt << 523 // Now Correct by Lorentz factor to get "proper" deltaTime 551 524 552 G4double restMass = track.GetDynamicP 525 G4double restMass = track.GetDynamicParticle()->GetMass() ; 553 G4double deltaProperTime = deltaTime*( restM 526 G4double deltaProperTime = deltaTime*( restMass/track.GetTotalEnergy() ) ; 554 527 555 fParticleChange.ProposeProperTime(track.GetP 528 fParticleChange.ProposeProperTime(track.GetProperTime() + deltaProperTime) ; 556 //fParticleChange.ProposeTrueStepLength( tra << 529 //fParticleChange. ProposeTrueStepLength( track.GetStepLength() ) ; 557 530 558 // If the particle is caught looping or is s 531 // If the particle is caught looping or is stuck (in very difficult 559 // boundaries) in a magnetic field (doing ma << 532 // boundaries) in a magnetic field (doing many steps) >> 533 // THEN this kills it ... 560 // 534 // 561 if ( fParticleIsLooping ) 535 if ( fParticleIsLooping ) 562 { 536 { 563 G4double endEnergy= fTransportEndKinetic 537 G4double endEnergy= fTransportEndKineticEnergy; 564 fNoLooperTrials ++; << 565 auto particleType= track.GetDynamicParti << 566 << 567 G4bool stable = particleType->GetPDGStab << 568 G4bool candidateForEnd = (endEnergy < fT << 569 || (fNoLooperTrial << 570 G4bool unstableAndKillable = !stable && << 571 G4bool unstableForEnd = (endEnergy < fTh << 572 && (fNoLooperTri << 573 if( (candidateForEnd && stable) || (unst << 574 { << 575 // Kill the looping particle << 576 // << 577 fParticleChange.ProposeTrackStatus( fS << 578 G4int particlePDG= particleType->GetPD << 579 const G4int electronPDG= 11; // G4Elec << 580 << 581 // Simple statistics << 582 fSumEnergyKilled += endEnergy; << 583 fSumEnerSqKilled += endEnergy * endEne << 584 fNumLoopersKilled++; << 585 << 586 if( endEnergy > fMaxEnergyKilled ) { << 587 fMaxEnergyKilled = endEnergy; << 588 fMaxEnergyKilledPDG = particlePDG; << 589 } << 590 if( particleType->GetPDGEncoding() != << 591 { << 592 fSumEnergyKilled_NonElectron += end << 593 fSumEnerSqKilled_NonElectron += end << 594 fNumLoopersKilled_NonElectron++; << 595 << 596 if( endEnergy > fMaxEnergyKilled_No << 597 { << 598 fMaxEnergyKilled_NonElectron = e << 599 fMaxEnergyKilled_NonElecPDG = p << 600 } << 601 } << 602 538 603 if( endEnergy > fThreshold_Warning_Ene << 539 if( (endEnergy < fThreshold_Important_Energy) 604 { << 540 || (fNoLooperTrials >= fThresholdTrials ) ){ 605 fpLogger->ReportLoopingTrack( track, << 541 // Kill the looping particle 606 noCall << 542 // 607 } << 543 fParticleChange.ProposeTrackStatus( fStopAndKill ) ; 608 fNoLooperTrials=0; << 544 >> 545 // 'Bare' statistics >> 546 fSumEnergyKilled += endEnergy; >> 547 if( endEnergy > fMaxEnergyKilled) { fMaxEnergyKilled= endEnergy; } >> 548 >> 549 #ifdef G4VERBOSE >> 550 if( (fVerboseLevel > 1) || >> 551 ( endEnergy > fThreshold_Warning_Energy ) ) { >> 552 G4cout << " G4Transportation is killing track that is looping or stuck " >> 553 << G4endl >> 554 << " This track has " << track.GetKineticEnergy() / MeV >> 555 << " MeV energy." << G4endl; >> 556 G4cout << " Number of trials = " << fNoLooperTrials >> 557 << " No of calls to AlongStepDoIt = " << noCalls >> 558 << G4endl; >> 559 } >> 560 #endif >> 561 fNoLooperTrials=0; 609 } 562 } 610 else << 563 else{ 611 { << 564 fNoLooperTrials ++; 612 fMaxEnergySaved = std::max( endEnergy, << 613 if( fNoLooperTrials == 1 ) { << 614 fSumEnergySaved += endEnergy; << 615 if ( !stable ) << 616 fSumEnergyUnstableSaved += endEne << 617 } << 618 #ifdef G4VERBOSE 565 #ifdef G4VERBOSE 619 if( verboseLevel > 2 && ! fSilenceLoop << 566 if( (fVerboseLevel > 2) ){ 620 { << 567 G4cout << " Transportation::AlongStepDoIt(): Particle looping - " 621 G4cout << " " << __func__ << 568 << " Number of trials = " << fNoLooperTrials 622 << " Particle is looping but << 569 << " No of calls to = " << noCalls 623 << " Number of trials = " < << 570 << G4endl; 624 << " No of calls to = " << << 571 } 625 } << 626 #endif 572 #endif 627 } 573 } 628 } << 574 }else{ 629 else << 630 { << 631 fNoLooperTrials=0; 575 fNoLooperTrials=0; 632 } 576 } 633 577 634 // Another (sometimes better way) is to use 578 // Another (sometimes better way) is to use a user-limit maximum Step size 635 // to alleviate this problem .. 579 // to alleviate this problem .. 636 580 637 // Introduce smooth curved trajectories to p 581 // Introduce smooth curved trajectories to particle-change 638 // 582 // 639 fParticleChange.SetPointerToVectorOfAuxiliar 583 fParticleChange.SetPointerToVectorOfAuxiliaryPoints 640 (fFieldPropagator->GimmeTrajectoryVectorAn 584 (fFieldPropagator->GimmeTrajectoryVectorAndForgetIt() ); 641 585 642 return &fParticleChange ; 586 return &fParticleChange ; 643 } 587 } 644 588 645 ////////////////////////////////////////////// 589 ////////////////////////////////////////////////////////////////////////// 646 // 590 // 647 // This ensures that the PostStep action is a 591 // This ensures that the PostStep action is always called, 648 // so that it can do the relocation if it is 592 // so that it can do the relocation if it is needed. 649 // 593 // 650 594 651 G4double G4Transportation:: 595 G4double G4Transportation:: 652 PostStepGetPhysicalInteractionLength( const G4 596 PostStepGetPhysicalInteractionLength( const G4Track&, 653 G4 597 G4double, // previousStepSize 654 G4 598 G4ForceCondition* pForceCond ) 655 { << 599 { 656 fFieldExertedForce = false; // Not known << 657 *pForceCond = Forced ; 600 *pForceCond = Forced ; 658 return DBL_MAX ; // was kInfinity ; but con 601 return DBL_MAX ; // was kInfinity ; but convention now is DBL_MAX 659 } 602 } 660 603 661 ////////////////////////////////////////////// 604 ///////////////////////////////////////////////////////////////////////////// 662 << 663 void G4Transportation::SetTouchableInformation << 664 { << 665 const G4VPhysicalVolume* pNewVol = touchable << 666 const G4Material* pNewMaterial = 0 ; << 667 G4VSensitiveDetector* pNewSensitiveDetector << 668 << 669 if( pNewVol != 0 ) << 670 { << 671 pNewMaterial= pNewVol->GetLogicalVolume()- << 672 pNewSensitiveDetector= pNewVol->GetLogical << 673 } << 674 << 675 fParticleChange.SetMaterialInTouchable( (G4M << 676 fParticleChange.SetSensitiveDetectorInToucha << 677 // temporarily until Get/Set Material of Par << 678 // and StepPoint can be made const. << 679 << 680 const G4MaterialCutsCouple* pNewMaterialCuts << 681 if( pNewVol != 0 ) << 682 { << 683 pNewMaterialCutsCouple=pNewVol->GetLogical << 684 } << 685 << 686 if ( pNewVol!=0 && pNewMaterialCutsCouple!=0 << 687 && pNewMaterialCutsCouple->GetMaterial()!= << 688 { << 689 // for parametrized volume << 690 // << 691 pNewMaterialCutsCouple = << 692 G4ProductionCutsTable::GetProductionCuts << 693 ->GetMaterialCuts << 694 pNewMaterialCut << 695 } << 696 fParticleChange.SetMaterialCutsCoupleInTouch << 697 << 698 // Set the touchable in ParticleChange << 699 // this must always be done because the part << 700 // uses this value to overwrite the current << 701 // << 702 fParticleChange.SetTouchableHandle(touchable << 703 } << 704 << 705 ////////////////////////////////////////////// << 706 // 605 // 707 606 708 G4VParticleChange* G4Transportation::PostStepD 607 G4VParticleChange* G4Transportation::PostStepDoIt( const G4Track& track, 709 608 const G4Step& ) 710 { 609 { 711 G4TouchableHandle retCurrentTouchable ; / << 610 G4TouchableHandle retCurrentTouchable ; // The one to return 712 G4bool isLastStep= false; << 713 611 714 // Initialize ParticleChange (by setting al 612 // Initialize ParticleChange (by setting all its members equal 715 // to correspond 613 // to corresponding members in G4Track) 716 // fParticleChange.Initialize(track) ; // T 614 // fParticleChange.Initialize(track) ; // To initialise TouchableChange 717 615 718 fParticleChange.ProposeTrackStatus(track.Get 616 fParticleChange.ProposeTrackStatus(track.GetTrackStatus()) ; 719 617 720 // If the Step was determined by the volume 618 // If the Step was determined by the volume boundary, 721 // logically relocate the particle 619 // logically relocate the particle 722 << 620 723 if(fGeometryLimitedStep) 621 if(fGeometryLimitedStep) 724 { 622 { 725 // fCurrentTouchable will now become the p 623 // fCurrentTouchable will now become the previous touchable, 726 // and what was the previous will be freed 624 // and what was the previous will be freed. 727 // (Needed because the preStepPoint can po 625 // (Needed because the preStepPoint can point to the previous touchable) 728 626 729 fLinearNavigator->SetGeometricallyLimitedS 627 fLinearNavigator->SetGeometricallyLimitedStep() ; 730 fLinearNavigator-> 628 fLinearNavigator-> 731 LocateGlobalPointAndUpdateTouchableHandle( 629 LocateGlobalPointAndUpdateTouchableHandle( track.GetPosition(), 732 630 track.GetMomentumDirection(), 733 631 fCurrentTouchableHandle, 734 632 true ) ; 735 // Check whether the particle is out of th 633 // Check whether the particle is out of the world volume 736 // If so it has exited and must be killed. 634 // If so it has exited and must be killed. 737 // 635 // 738 if( fCurrentTouchableHandle->GetVolume() = 636 if( fCurrentTouchableHandle->GetVolume() == 0 ) 739 { 637 { 740 fParticleChange.ProposeTrackStatus( fSt 638 fParticleChange.ProposeTrackStatus( fStopAndKill ) ; 741 } 639 } 742 retCurrentTouchable = fCurrentTouchableHan 640 retCurrentTouchable = fCurrentTouchableHandle ; 743 fParticleChange.SetTouchableHandle( fCurre 641 fParticleChange.SetTouchableHandle( fCurrentTouchableHandle ) ; 744 << 745 // Update the Step flag which identifies t << 746 if( !fFieldExertedForce ) << 747 isLastStep = fLinearNavigator->ExitedM << 748 || fLinearNavigator->Entered << 749 else << 750 isLastStep = fFieldPropagator->IsLastSt << 751 } 642 } 752 else // fGeometryLimitedStep 643 else // fGeometryLimitedStep is false 753 { 644 { 754 // This serves only to move the Navigator' 645 // This serves only to move the Navigator's location 755 // 646 // 756 fLinearNavigator->LocateGlobalPointWithinV 647 fLinearNavigator->LocateGlobalPointWithinVolume( track.GetPosition() ) ; 757 648 758 // The value of the track's current Toucha 649 // The value of the track's current Touchable is retained. 759 // (and it must be correct because we must 650 // (and it must be correct because we must use it below to 760 // overwrite the (unset) one in particle c 651 // overwrite the (unset) one in particle change) 761 // It must be fCurrentTouchable too ?? 652 // It must be fCurrentTouchable too ?? 762 // 653 // 763 fParticleChange.SetTouchableHandle( track. 654 fParticleChange.SetTouchableHandle( track.GetTouchableHandle() ) ; 764 retCurrentTouchable = track.GetTouchableHa 655 retCurrentTouchable = track.GetTouchableHandle() ; 765 << 766 isLastStep= false; << 767 } // endif ( fGeometryLimitedStep ) 656 } // endif ( fGeometryLimitedStep ) 768 fLastStepInVolume= isLastStep; << 769 << 770 fParticleChange.ProposeFirstStepInVolume(fFi << 771 fParticleChange.ProposeLastStepInVolume(isLa << 772 657 773 SetTouchableInformation(retCurrentTouchable) << 658 const G4VPhysicalVolume* pNewVol = retCurrentTouchable->GetVolume() ; >> 659 const G4Material* pNewMaterial = 0 ; >> 660 const G4VSensitiveDetector* pNewSensitiveDetector = 0 ; >> 661 >> 662 if( pNewVol != 0 ) >> 663 { >> 664 pNewMaterial= pNewVol->GetLogicalVolume()->GetMaterial(); >> 665 pNewSensitiveDetector= pNewVol->GetLogicalVolume()->GetSensitiveDetector(); >> 666 } >> 667 >> 668 // ( <const_cast> pNewMaterial ) ; >> 669 // ( <const_cast> pNewSensitiveDetector) ; >> 670 >> 671 fParticleChange.SetMaterialInTouchable( (G4Material *) pNewMaterial ) ; >> 672 fParticleChange.SetSensitiveDetectorInTouchable( (G4VSensitiveDetector *) pNewSensitiveDetector ) ; >> 673 >> 674 const G4MaterialCutsCouple* pNewMaterialCutsCouple = 0; >> 675 if( pNewVol != 0 ) >> 676 { >> 677 pNewMaterialCutsCouple=pNewVol->GetLogicalVolume()->GetMaterialCutsCouple(); >> 678 } >> 679 >> 680 if( pNewVol!=0 && pNewMaterialCutsCouple!=0 && pNewMaterialCutsCouple->GetMaterial()!=pNewMaterial ) >> 681 { >> 682 // for parametrized volume >> 683 // >> 684 pNewMaterialCutsCouple = >> 685 G4ProductionCutsTable::GetProductionCutsTable() >> 686 ->GetMaterialCutsCouple(pNewMaterial, >> 687 pNewMaterialCutsCouple->GetProductionCuts()); >> 688 } >> 689 fParticleChange.SetMaterialCutsCoupleInTouchable( pNewMaterialCutsCouple ); >> 690 >> 691 // temporarily until Get/Set Material of ParticleChange, >> 692 // and StepPoint can be made const. >> 693 // Set the touchable in ParticleChange >> 694 // this must always be done because the particle change always >> 695 // uses this value to overwrite the current touchable pointer. >> 696 // >> 697 fParticleChange.SetTouchableHandle(retCurrentTouchable) ; 774 698 775 return &fParticleChange ; 699 return &fParticleChange ; 776 } 700 } 777 701 778 ////////////////////////////////////////////// << 702 // New method takes over the responsibility to reset the state of G4Transportation 779 // New method takes over the responsibility to << 703 // object at the start of a new track or the resumption of a suspended track. 780 // G4Transportation object at the start of a n << 781 // of a suspended track. << 782 // << 783 704 784 void 705 void 785 G4Transportation::StartTracking(G4Track* aTrac 706 G4Transportation::StartTracking(G4Track* aTrack) 786 { 707 { 787 G4VProcess::StartTracking(aTrack); 708 G4VProcess::StartTracking(aTrack); 788 fNewTrack= true; << 789 fFirstStepInVolume= true; << 790 fLastStepInVolume= false; << 791 << 792 // The actions here are those that were take << 793 // when track.GetCurrentStepNumber()==1 << 794 709 795 // Whether field exists should be determined << 710 // The actions here are those that were taken in AlongStepGPIL 796 G4FieldManagerStore* fieldMgrStore= G4FieldM << 711 // when track.GetCurrentStepNumber()==1 797 fAnyFieldExists = fieldMgrStore->size() > 0; << 712 798 << 799 // reset safety value and center 713 // reset safety value and center 800 // 714 // 801 fPreviousSafety = 0.0 ; 715 fPreviousSafety = 0.0 ; 802 fPreviousSftOrigin = G4ThreeVector(0.,0.,0.) 716 fPreviousSftOrigin = G4ThreeVector(0.,0.,0.) ; 803 717 804 // reset looping counter -- for motion in fi 718 // reset looping counter -- for motion in field 805 fNoLooperTrials= 0; << 719 if( aTrack->GetCurrentStepNumber()==1 ) { 806 // Must clear this state .. else it depends << 720 fNoLooperTrials= 0; 807 // --> a better solution would set this fro << 808 // Was if( aTrack->GetCurrentStepNumber()==1 << 809 << 810 // ChordFinder reset internal state << 811 // << 812 if( fFieldPropagator && fAnyFieldExists ) << 813 { << 814 fFieldPropagator->ClearPropagatorState(); << 815 // Resets all state of field propagator << 816 // values (in case of overlaps and to w << 817 } 721 } 818 722 819 // Make sure to clear the chord finders of a << 723 // Propagator and ChordFinder: reset internal state 820 // 724 // 821 fieldMgrStore->ClearAllChordFindersState(); << 725 if( DoesGlobalFieldExist() ) { >> 726 fFieldPropagator->ClearPropagatorState(); 822 727 >> 728 G4ChordFinder* chordF= fFieldPropagator->GetChordFinder(); >> 729 if( chordF ) chordF->ResetStepEstimate(); >> 730 } >> 731 823 // Update the current touchable handle (fro 732 // Update the current touchable handle (from the track's) 824 // 733 // 825 fCurrentTouchableHandle = aTrack->GetTouchab 734 fCurrentTouchableHandle = aTrack->GetTouchableHandle(); 826 << 827 // Inform field propagator of new track << 828 // << 829 fFieldPropagator->PrepareNewTrack(); << 830 } << 831 << 832 ////////////////////////////////////////////// << 833 // << 834 << 835 G4bool G4Transportation::EnableMagneticMoment( << 836 { << 837 G4bool lastValue= fUseMagneticMoment; << 838 fUseMagneticMoment= useMoment; << 839 return lastValue; << 840 } << 841 << 842 ////////////////////////////////////////////// << 843 // << 844 << 845 G4bool G4Transportation::EnableGravity(G4bool << 846 { << 847 G4bool lastValue= fUseGravity; << 848 fUseGravity= useGravity; << 849 return lastValue; << 850 } << 851 << 852 ////////////////////////////////////////////// << 853 // << 854 // Supress (or not) warnings about 'looping' << 855 << 856 void G4Transportation::SetSilenceLooperWarning << 857 { << 858 fSilenceLooperWarnings= val; // Flag to *Su << 859 } << 860 << 861 ////////////////////////////////////////////// << 862 // << 863 G4bool G4Transportation::GetSilenceLooperWarni << 864 { << 865 return fSilenceLooperWarnings; << 866 } << 867 << 868 << 869 ////////////////////////////////////////////// << 870 // << 871 void G4Transportation::SetHighLooperThresholds << 872 { << 873 // Restores the old high values -- potential << 874 // HEP experiments. << 875 // Caution: All tracks with E < 100 MeV tha << 876 SetThresholdWarningEnergy( 100.0 * CLHEP: << 877 SetThresholdImportantEnergy( 250.0 * CLHEP: << 878 << 879 G4int maxTrials = 10; << 880 SetThresholdTrials( maxTrials ); << 881 << 882 PushThresholdsToLogger(); // Again, to be s << 883 if( verboseLevel ) ReportLooperThresholds() << 884 } << 885 << 886 ////////////////////////////////////////////// << 887 void G4Transportation::SetLowLooperThresholds( << 888 { << 889 // These values were the default in Geant4 1 << 890 SetThresholdWarningEnergy( 1.0 * CLHEP:: << 891 SetThresholdImportantEnergy( 1.0 * CLHEP:: << 892 << 893 G4int maxTrials = 30; // A new value - was << 894 SetThresholdTrials( maxTrials ); << 895 << 896 PushThresholdsToLogger(); // Again, to be s << 897 if( verboseLevel ) ReportLooperThresholds() << 898 } 735 } 899 736 900 ////////////////////////////////////////////// << 901 // << 902 void << 903 G4Transportation::ReportMissingLogger( const c << 904 { << 905 const char* message= "Logger object missing << 906 G4String classAndMethod= G4String("G4Transp << 907 G4Exception(classAndMethod, "Missing Logger << 908 } << 909 << 910 << 911 ////////////////////////////////////////////// << 912 // << 913 void << 914 G4Transportation::ReportLooperThresholds() << 915 { << 916 PushThresholdsToLogger(); // To be absolut << 917 fpLogger->ReportLooperThresholds("G4Transpo << 918 } << 919 << 920 ////////////////////////////////////////////// << 921 // << 922 void G4Transportation::ProcessDescription(std: << 923 << 924 // StreamInfo(std::ostream& out, const G4Parti << 925 << 926 { << 927 G4String indent = " "; // : ""); << 928 G4long oldPrec= outStr.precision(6); << 929 // outStr << std::setprecision(6); << 930 outStr << G4endl << indent << GetProcessName << 931 << 932 outStr << " Parameters for looping particl << 933 << " warning-E = " << fThreshold_ << 934 << " important E = " << fThreshol << 935 << " thresholdTrials " << fThresh << 936 outStr.precision(oldPrec); << 937 } << 938 737