Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // 23 // >> 24 // $Id: G4Transportation.cc,v 1.51 2004/12/07 08:28:39 gcosmo Exp $ >> 25 // GEANT4 tag $Name: geant4-07-00-cand-03 $ 27 // 26 // 28 // ------------------------------------------- 27 // ------------------------------------------------------------ 29 // GEANT 4 include file implementation 28 // GEANT 4 include file implementation 30 // 29 // 31 // ------------------------------------------- 30 // ------------------------------------------------------------ 32 // 31 // 33 // This class is a process responsible for the 32 // This class is a process responsible for the transportation of 34 // a particle, ie the geometrical propagation 33 // a particle, ie the geometrical propagation that encounters the 35 // geometrical sub-volumes of the detectors. 34 // geometrical sub-volumes of the detectors. 36 // 35 // 37 // It is also tasked with the key role of prop << 36 // It is also tasked with part of updating the "safety". 38 // which will be used to update the post-ste << 39 // 37 // 40 // =========================================== 38 // ======================================================================= >> 39 // Modified: >> 40 // 11 Aug 2004, M.Asai: Add G4VSensitiveDetector* for updating stepPoint. >> 41 // 21 June 2003, J.Apostolakis: Calling field manager with >> 42 // track, to enable it to configure its accuracy >> 43 // 13 May 2003, J.Apostolakis: Zero field areas now taken into >> 44 // account correclty in all cases (thanks to W Pokorski). >> 45 // 29 June 2001, J.Apostolakis, D.Cote-Ahern, P.Gumplinger: >> 46 // correction for spin tracking >> 47 // 20 Febr 2001, J.Apostolakis: update for new FieldTrack >> 48 // 22 Sept 2000, V.Grichine: update of Kinetic Energy >> 49 // 9 June 1999, J.Apostolakis & S.Giani: protect full relocation >> 50 // in DEBUG for track starting on surface that >> 51 // goes step < tolerance. 41 // Created: 19 March 1997, J. Apostolakis 52 // Created: 19 March 1997, J. Apostolakis 42 // =========================================== 53 // ======================================================================= 43 54 44 #include "G4Transportation.hh" 55 #include "G4Transportation.hh" 45 #include "G4TransportationProcessType.hh" << 46 #include "G4TransportationLogger.hh" << 47 << 48 #include "G4PhysicalConstants.hh" << 49 #include "G4SystemOfUnits.hh" << 50 #include "G4ProductionCutsTable.hh" 56 #include "G4ProductionCutsTable.hh" 51 #include "G4ParticleTable.hh" 57 #include "G4ParticleTable.hh" 52 << 58 #include "G4ChordFinder.hh" 53 #include "G4ChargeState.hh" << 54 #include "G4EquationOfMotion.hh" << 55 << 56 #include "G4FieldManagerStore.hh" << 57 << 58 #include "G4Navigator.hh" << 59 #include "G4PropagatorInField.hh" << 60 #include "G4TransportationManager.hh" << 61 << 62 #include "G4TransportationParameters.hh" << 63 << 64 class G4VSensitiveDetector; 59 class G4VSensitiveDetector; 65 60 66 G4bool G4Transportation::fUseMagneticMoment=fa << 67 G4bool G4Transportation::fUseGravity= false; << 68 G4bool G4Transportation::fSilenceLooperWarning << 69 << 70 ////////////////////////////////////////////// 61 ////////////////////////////////////////////////////////////////////////// 71 // 62 // 72 // Constructor 63 // Constructor 73 64 74 G4Transportation::G4Transportation( G4int verb << 65 G4Transportation::G4Transportation( G4int verboseLevel ) 75 : G4VProcess( aName, fTransportation ), << 66 : G4VProcess( G4String("Transportation") ), 76 fFieldExertedForce( false ), << 67 fParticleIsLooping( false ), 77 fPreviousSftOrigin( 0.,0.,0. ), << 68 fPreviousSftOrigin (0.,0.,0.), 78 fPreviousSafety( 0.0 ), << 69 fPreviousSafety ( 0.0 ), 79 fEndPointDistance( -1.0 ), << 70 fThreshold_Warning_Energy( 100 * MeV ), 80 fShortStepOptimisation( false ) // Old def << 71 fThreshold_Important_Energy( 250 * MeV ), >> 72 fThresholdTrials( 10 ), >> 73 fUnimportant_Energy( 1 * MeV ), >> 74 fNoLooperTrials(0), >> 75 fSumEnergyKilled( 0.0 ), fMaxEnergyKilled( 0.0 ), >> 76 >> 77 fVerboseLevel( verboseLevel ) 81 { 78 { 82 SetProcessSubType(static_cast<G4int>(TRANSPO << 83 pParticleChange= &fParticleChange; // Requ << 84 SetVerboseLevel(verbosity); << 85 << 86 G4TransportationManager* transportMgr ; 79 G4TransportationManager* transportMgr ; 87 80 88 transportMgr = G4TransportationManager::GetT 81 transportMgr = G4TransportationManager::GetTransportationManager() ; 89 82 90 fLinearNavigator = transportMgr->GetNavigato 83 fLinearNavigator = transportMgr->GetNavigatorForTracking() ; 91 84 92 fFieldPropagator = transportMgr->GetPropagat << 85 // fGlobalFieldMgr = transportMgr->GetFieldManager() ; 93 86 94 fpSafetyHelper = transportMgr->GetSafetyHe << 87 fFieldPropagator = transportMgr->GetPropagatorInField() ; 95 << 96 fpLogger = new G4TransportationLogger("G4Tra << 97 << 98 if( G4TransportationParameters::Exists() ) << 99 { << 100 auto trParams= G4TransportationParameters: << 101 << 102 SetThresholdWarningEnergy( trParams->GetW << 103 SetThresholdImportantEnergy( trParams->Get << 104 SetThresholdTrials( trParams->GetNumberOfT << 105 G4Transportation::fSilenceLooperWarnings= << 106 } << 107 else { << 108 SetHighLooperThresholds(); << 109 // Use the old defaults: Warning = 100 Me << 110 } << 111 88 112 PushThresholdsToLogger(); << 89 // Cannot determine whether a field exists here, 113 // Should be done by Set methods in SetHighL << 90 // because it would only work if the field manager has informed 114 << 91 // about the detector's field before this transportation process 115 static G4ThreadLocal G4TouchableHandle* pNul << 92 // is constructed. 116 if ( !pNullTouchableHandle) << 93 // Instead later the method DoesGlobalFieldExist() is called 117 { << 118 pNullTouchableHandle = new G4TouchableHand << 119 } << 120 fCurrentTouchableHandle = *pNullTouchableHan << 121 // Points to (G4VTouchable*) 0 << 122 94 >> 95 fCurrentTouchableHandle = new G4TouchableHistory(); 123 96 124 #ifdef G4VERBOSE << 97 fEndGlobalTimeComputed = false; 125 if( verboseLevel > 0) << 98 fCandidateEndGlobalTime = 0; 126 { << 127 G4cout << " G4Transportation constructor> << 128 if ( fShortStepOptimisation ) { G4cout < << 129 else { G4cout < << 130 } << 131 #endif << 132 } 99 } 133 100 134 ////////////////////////////////////////////// 101 ////////////////////////////////////////////////////////////////////////// 135 102 136 G4Transportation::~G4Transportation() 103 G4Transportation::~G4Transportation() 137 { 104 { 138 if( fSumEnergyKilled > 0.0 ) << 105 if( (fVerboseLevel > 0) && (fSumEnergyKilled > 0.0 ) ){ 139 { << 106 G4cout << " G4Transportation: Statistics for looping particles " << G4endl; 140 PrintStatistics( G4cout ); << 107 G4cout << " Sum of energy of loopers killed: " << fSumEnergyKilled << G4endl; 141 } << 108 G4cout << " Max energy of loopers killed: " << fMaxEnergyKilled << G4endl; 142 delete fpLogger; << 109 } 143 } << 144 << 145 ////////////////////////////////////////////// << 146 << 147 void << 148 G4Transportation::PrintStatistics( std::ostrea << 149 { << 150 outStr << " G4Transportation: Statistics fo << 151 if( fSumEnergyKilled > 0.0 || fNumLoopersKi << 152 { << 153 outStr << " Sum of energy of looping t << 154 << fSumEnergyKilled / CLHEP::MeV << 155 << " from " << fNumLoopersKilled << 156 << " Sum of energy of non-elect << 157 << fSumEnergyKilled_NonElectron / << 158 << " from " << fNumLoopersKilled << 159 << G4endl; << 160 outStr << " Max energy of *any type* << 161 << " its PDG was " << fMaxEner << 162 if( fMaxEnergyKilled_NonElectron > 0.0 ) << 163 { << 164 outStr << " Max energy of non-elect << 165 << fMaxEnergyKilled_NonElectro << 166 << " its PDG was " << fMaxE << 167 } << 168 if( fMaxEnergySaved > 0.0 ) << 169 { << 170 outStr << " Max energy of loopers ' << 171 outStr << " Sum of energy of looper << 172 << fSumEnergySaved << G4endl; << 173 outStr << " Sum of energy of unstab << 174 << fSumEnergyUnstableSaved << << 175 } << 176 } << 177 else << 178 { << 179 outStr << " No looping tracks found or k << 180 } << 181 } 110 } 182 111 183 ////////////////////////////////////////////// 112 ////////////////////////////////////////////////////////////////////////// 184 // 113 // 185 // Responsibilities: 114 // Responsibilities: 186 // Find whether the geometry limits the Ste 115 // Find whether the geometry limits the Step, and to what length 187 // Calculate the new value of the safety an 116 // Calculate the new value of the safety and return it. 188 // Store the final time, position and momen 117 // Store the final time, position and momentum. 189 118 190 G4double G4Transportation::AlongStepGetPhysica << 119 G4double G4Transportation:: 191 const G4Track& track, << 120 AlongStepGetPhysicalInteractionLength( const G4Track& track, 192 G4double, // previousStepSize << 121 G4double, // previousStepSize 193 G4double currentMinimumStep, G4double& curre << 122 G4double currentMinimumStep, 194 G4GPILSelection* selection) << 123 G4double& currentSafety, >> 124 G4GPILSelection* selection ) 195 { 125 { 196 // Initial actions moved to StartTrack() << 126 G4double geometryStepLength, newSafety ; 197 // -------------------------------------- << 127 fParticleIsLooping = false ; 198 // Note: in case another process changes tou << 128 199 // it will be necessary to add here (for << 129 if( track.GetCurrentStepNumber()==1 ) 200 // fCurrentTouchableHandle = aTrack->GetTouc << 130 { >> 131 // reset safety value >> 132 // >> 133 fPreviousSafety = 0.0 ; >> 134 fPreviousSftOrigin = G4ThreeVector(0.,0.,0.) ; >> 135 >> 136 // reset counter for looping particles in field >> 137 fNoLooperTrials= 0; >> 138 >> 139 // ChordFinder reset internal state >> 140 // >> 141 if ( DoesGlobalFieldExist() ) >> 142 { >> 143 G4ChordFinder* chordF= fFieldPropagator->GetChordFinder(); >> 144 if( chordF ) chordF->ResetStepEstimate(); >> 145 } >> 146 >> 147 // We need to update the current transportation's touchable handle >> 148 // to the track's one >> 149 // >> 150 fCurrentTouchableHandle = track.GetTouchableHandle(); >> 151 } 201 152 202 // GPILSelection is set to defaule value of 153 // GPILSelection is set to defaule value of CandidateForSelection 203 // It is a return value 154 // It is a return value 204 // 155 // 205 *selection = CandidateForSelection; << 156 *selection = CandidateForSelection ; 206 157 207 // Get initial Energy/Momentum of the track 158 // Get initial Energy/Momentum of the track 208 // 159 // 209 const G4ThreeVector startPosition = track << 160 const G4DynamicParticle* pParticle = track.GetDynamicParticle() ; 210 const G4ThreeVector startMomentumDir = track << 161 G4ThreeVector startMomentumDir = pParticle->GetMomentumDirection() ; >> 162 G4ThreeVector startPosition = track.GetPosition() ; 211 163 212 // The Step Point safety can be limited by o << 164 // G4double theTime = track.GetGlobalTime() ; >> 165 >> 166 // The Step Point safety can be limited by other geometries and/or the 213 // assumptions of any process - it's not alw 167 // assumptions of any process - it's not always the geometrical safety. 214 // We calculate the starting point's isotrop 168 // We calculate the starting point's isotropic safety here. >> 169 // >> 170 G4ThreeVector OriginShift = startPosition - fPreviousSftOrigin ; >> 171 G4double MagSqShift = OriginShift.mag2() ; >> 172 if( MagSqShift >= sqr(fPreviousSafety) ) 215 { 173 { 216 const G4double MagSqShift = (startPosition << 174 currentSafety = 0.0 ; 217 << 175 } 218 if(MagSqShift >= sqr(fPreviousSafety)) << 176 else 219 currentSafety = 0.0; << 177 { 220 else << 178 currentSafety = fPreviousSafety - std::sqrt(MagSqShift) ; 221 currentSafety = fPreviousSafety - std::s << 222 } 179 } 223 180 224 // Is the particle charged or has it a magne << 181 // Is the particle charged ? 225 // 182 // 226 const G4DynamicParticle* pParticle = track.G << 183 G4ParticleDefinition* pParticleDef = pParticle->GetDefinition() ; >> 184 G4double particleCharge = pParticleDef->GetPDGCharge() ; 227 185 228 const G4double particleMass = pParticle->G << 186 fGeometryLimitedStep = false ; 229 const G4double particleCharge = pParticle->G << 187 // fEndGlobalTimeComputed = false ; 230 const G4double kineticEnergy = pParticle->Ge << 231 << 232 const G4double magneticMoment = pParticle << 233 const G4ThreeVector particleSpin = pParticle << 234 188 235 // There is no need to locate the current vo 189 // There is no need to locate the current volume. It is Done elsewhere: 236 // On track construction << 190 // On track construction 237 // By the tracking, after all AlongStepDoI 191 // By the tracking, after all AlongStepDoIts, in "Relocation" 238 192 239 // Check if the particle has a force, EM or << 193 // Check whether the particle have an (EM) field force exerting upon it 240 // 194 // >> 195 G4FieldManager* fieldMgr=0; >> 196 G4bool fieldExertsForce = false ; >> 197 if( (particleCharge != 0.0) ) >> 198 { >> 199 fieldMgr= fFieldPropagator->FindAndSetFieldManager( track.GetVolume() ); >> 200 if (fieldMgr != 0) { >> 201 // If the field manager has no field, there is no field ! >> 202 fieldExertsForce = (fieldMgr->GetDetectorField() != 0); >> 203 } >> 204 } >> 205 >> 206 // Choose the calculation of the transportation: Field or not >> 207 // >> 208 if( !fieldExertsForce ) >> 209 { >> 210 G4double linearStepLength ; >> 211 if( currentMinimumStep <= currentSafety ) >> 212 { >> 213 // The Step is guaranteed to be taken >> 214 // >> 215 geometryStepLength = currentMinimumStep ; >> 216 fGeometryLimitedStep = false ; >> 217 } >> 218 else >> 219 { >> 220 // Find whether the straight path intersects a volume >> 221 // >> 222 linearStepLength = fLinearNavigator->ComputeStep( startPosition, >> 223 startMomentumDir, >> 224 currentMinimumStep, >> 225 newSafety) ; >> 226 // Remember last safety origin & value. >> 227 // >> 228 fPreviousSftOrigin = startPosition ; >> 229 fPreviousSafety = newSafety ; >> 230 >> 231 // The safety at the initial point has been re-calculated: >> 232 // >> 233 currentSafety = newSafety ; >> 234 >> 235 if( linearStepLength <= currentMinimumStep) >> 236 { >> 237 // The geometry limits the Step size (an intersection was found.) >> 238 // >> 239 geometryStepLength = linearStepLength ; >> 240 fGeometryLimitedStep = true ; >> 241 } >> 242 else >> 243 { >> 244 // The full Step is taken. >> 245 // >> 246 geometryStepLength = currentMinimumStep ; >> 247 fGeometryLimitedStep = false ; >> 248 } >> 249 } >> 250 endpointDistance = geometryStepLength ; 241 251 242 G4bool eligibleEM = << 252 // Calculate final position 243 (particleCharge != 0.0) || ((magneticMomen << 253 // 244 G4bool eligibleGrav = (particleMass != 0.0) << 254 fTransportEndPosition = startPosition+geometryStepLength*startMomentumDir ; 245 << 246 fFieldExertedForce = false; << 247 << 248 if(eligibleEM || eligibleGrav) << 249 { << 250 if(G4FieldManager* fieldMgr = << 251 fFieldPropagator->FindAndSetFieldMana << 252 { << 253 // User can configure the field Manager << 254 fieldMgr->ConfigureForTrack(&track); << 255 // Called here to allow a transition fro << 256 // to finite field (non-zero pointer). << 257 << 258 // If the field manager has no field ptr << 259 // by definition ( = there is no field << 260 if(const G4Field* ptrField = fieldMgr->G << 261 fFieldExertedForce = << 262 eligibleEM || (eligibleGrav && ptrFi << 263 } << 264 } << 265 << 266 G4double geometryStepLength = currentMinimum << 267 << 268 if(currentMinimumStep == 0.0) << 269 { << 270 fEndPointDistance = 0.0; << 271 fGeometryLimitedStep = false; // Old cod << 272 // Changed to avoid problems when setting << 273 fMomentumChanged = false; << 274 fParticleIsLooping = false; << 275 fEndGlobalTimeComputed = false; << 276 fTransportEndPosition = startPosition << 277 fTransportEndMomentumDir = startMomentum << 278 fTransportEndKineticEnergy = kineticEnergy << 279 fTransportEndSpin = particleSpin; << 280 } << 281 else if(!fFieldExertedForce) << 282 { << 283 fGeometryLimitedStep = false; << 284 if(geometryStepLength > currentSafety || ! << 285 { << 286 const G4double linearStepLength = fLinea << 287 startPosition, startMomentumDir, curre << 288 << 289 if(linearStepLength <= currentMinimumSte << 290 { << 291 geometryStepLength = linearStepLength; << 292 fGeometryLimitedStep = true; << 293 } << 294 // Remember last safety origin & value. << 295 // << 296 fPreviousSftOrigin = startPosition; << 297 fPreviousSafety = currentSafety; << 298 fpSafetyHelper->SetCurrentSafety(current << 299 } << 300 << 301 fEndPointDistance = geometryStepLength; << 302 << 303 fMomentumChanged = false; << 304 fParticleIsLooping = false; << 305 fEndGlobalTimeComputed = false; << 306 fTransportEndPosition = << 307 startPosition + geometryStepLength * sta << 308 fTransportEndMomentumDir = startMomentum << 309 fTransportEndKineticEnergy = kineticEnergy << 310 fTransportEndSpin = particleSpin; << 311 } << 312 else // A field exerts force << 313 { << 314 const auto pParticleDef = pParticle->Ge << 315 const auto particlePDGSpin = pParticleDef- << 316 const auto particlePDGMagM = pParticleDef- << 317 << 318 auto equationOfMotion = fFieldPropagator-> << 319 << 320 // The charge can change (dynamic), theref << 321 // << 322 equationOfMotion->SetChargeMomentumMass( << 323 G4ChargeState(particleCharge, magneticMo << 324 pParticle->GetTotalMomentum(), particleM << 325 << 326 G4FieldTrack aFieldTrack(startPosition, << 327 track.GetGlobalTi << 328 startMomentumDir, << 329 particleCharge, p << 330 0.0, // Length a << 331 particlePDGSpin); << 332 << 333 // Do the Transport in the field (non rect << 334 // << 335 const G4double lengthAlongCurve = fFieldPr << 336 aFieldTrack, currentMinimumStep, current << 337 kineticEnergy < fThreshold_Important_Ene << 338 << 339 if(lengthAlongCurve < geometryStepLength) << 340 geometryStepLength = lengthAlongCurve; << 341 << 342 // Remember last safety origin & value. << 343 // << 344 fPreviousSftOrigin = startPosition; << 345 fPreviousSafety = currentSafety; << 346 fpSafetyHelper->SetCurrentSafety(currentSa << 347 255 348 fGeometryLimitedStep = fFieldPropagator->I << 256 // Momentum direction, energy and polarisation are unchanged by transport 349 // << 257 // 350 // It is possible that step was reduced in << 258 fTransportEndMomentumDir = startMomentumDir ; 351 // previous zero steps. To cope with case << 259 fTransportEndKineticEnergy = track.GetKineticEnergy() ; 352 // in full, we must rely on PiF to obtain << 260 fTransportEndSpin = track.GetPolarization(); >> 261 fParticleIsLooping = false ; >> 262 fMomentumChanged = false ; >> 263 fEndGlobalTimeComputed = false ; >> 264 } >> 265 else // A field exerts force >> 266 { >> 267 G4double momentumMagnitude = pParticle->GetTotalMomentum() ; >> 268 G4ThreeVector EndUnitMomentum ; >> 269 G4double lengthAlongCurve ; >> 270 G4double restMass = pParticleDef->GetPDGMass() ; >> 271 >> 272 fFieldPropagator->SetChargeMomentumMass( particleCharge, // in e+ units >> 273 momentumMagnitude, // in Mev/c >> 274 restMass ) ; 353 275 354 G4bool changesEnergy = << 276 // Message the field Manager, to configure it for this track 355 fFieldPropagator->GetCurrentFieldManager << 277 fieldMgr->ConfigureForTrack( &track ); 356 278 357 fMomentumChanged = true; << 279 G4ThreeVector spin = track.GetPolarization() ; 358 fParticleIsLooping = fFieldPropagator->IsP << 280 G4FieldTrack aFieldTrack = G4FieldTrack( startPosition, >> 281 track.GetMomentumDirection(), >> 282 0.0, >> 283 track.GetKineticEnergy(), >> 284 restMass, >> 285 track.GetVelocity(), >> 286 track.GetGlobalTime(), // Lab. >> 287 track.GetProperTime(), // Part. >> 288 &spin ) ; >> 289 if( currentMinimumStep > 0 ) >> 290 { >> 291 // Do the Transport in the field (non recti-linear) >> 292 // >> 293 lengthAlongCurve = fFieldPropagator->ComputeStep( aFieldTrack, >> 294 currentMinimumStep, >> 295 currentSafety, >> 296 track.GetVolume() ) ; >> 297 if( lengthAlongCurve < currentMinimumStep) >> 298 { >> 299 geometryStepLength = lengthAlongCurve ; >> 300 fGeometryLimitedStep = true ; >> 301 } >> 302 else >> 303 { >> 304 geometryStepLength = currentMinimumStep ; >> 305 fGeometryLimitedStep = false ; >> 306 } >> 307 } >> 308 else >> 309 { >> 310 geometryStepLength = lengthAlongCurve= 0.0 ; >> 311 fGeometryLimitedStep = false ; >> 312 } 359 313 360 fEndGlobalTimeComputed = changesEnergy; << 314 // Remember last safety origin & value. 361 fTransportEndPosition = aFieldTrack.Get << 315 // 362 fTransportEndMomentumDir = aFieldTrack.Get << 316 fPreviousSftOrigin = startPosition ; >> 317 fPreviousSafety = currentSafety ; >> 318 >> 319 // Get the End-Position and End-Momentum (Dir-ection) >> 320 // >> 321 fTransportEndPosition = aFieldTrack.GetPosition() ; 363 322 364 // G4cout << " G4Transport: End of step pM << 323 // Momentum: Magnitude and direction can be changed too now ... >> 324 // >> 325 fMomentumChanged = true ; >> 326 fTransportEndMomentumDir = aFieldTrack.GetMomentumDir() ; 365 327 366 fEndPointDistance = (fTransportEndPositio << 328 fTransportEndKineticEnergy = aFieldTrack.GetKineticEnergy() ; 367 329 368 // Ignore change in energy for fields that << 330 if( fFieldPropagator->GetCurrentFieldManager()->DoesFieldChangeEnergy() ) 369 // This hides the integration error, but g << 331 { 370 fTransportEndKineticEnergy = << 332 // If the field can change energy, then the time must be integrated 371 changesEnergy ? aFieldTrack.GetKineticEn << 333 // - so this should have been updated 372 fTransportEndSpin = aFieldTrack.GetSpin(); << 334 // >> 335 fCandidateEndGlobalTime = aFieldTrack.GetLabTimeOfFlight(); >> 336 fEndGlobalTimeComputed = true; 373 337 374 if(fEndGlobalTimeComputed) << 338 // was ( fCandidateEndGlobalTime != track.GetGlobalTime() ); 375 { << 339 // a cleaner way is to have FieldTrack knowing whether time is updated. 376 // If the field can change energy, then << 340 } 377 // - so this should have been updated << 341 else 378 // << 342 { 379 fCandidateEndGlobalTime = aFieldTrack.Ge << 343 // The energy should be unchanged by field transport, >> 344 // - so the time changed will be calculated elsewhere >> 345 // >> 346 fEndGlobalTimeComputed = false; 380 347 381 // was ( fCandidateEndGlobalTime != trac << 348 // Check that the integration preserved the energy 382 // a cleaner way is to have FieldTrack k << 349 // - and if not correct this! 383 } << 350 G4double startEnergy= track.GetKineticEnergy(); 384 #if defined(G4VERBOSE) || defined(G4DEBUG_TRAN << 351 G4double endEnergy= fTransportEndKineticEnergy; 385 else << 352 386 { << 353 static G4int no_inexact_steps=0, no_large_ediff; 387 // The energy should be unchanged by fie << 354 G4double absEdiff = std::fabs(startEnergy- endEnergy); 388 // - so the time changed will be calc << 355 if( absEdiff > perMillion * endEnergy ) 389 // << 356 { 390 // Check that the integration preserved << 357 no_inexact_steps++; 391 // - and if not correct this! << 358 // Possible statistics keeping here ... 392 G4double startEnergy = kineticEnergy; << 359 } 393 G4double endEnergy = fTransportEndKine << 360 if( fVerboseLevel > 1 ) 394 << 395 static G4ThreadLocal G4int no_large_edif << 396 if(verboseLevel > 1) << 397 { << 398 if(std::fabs(startEnergy - endEnergy) << 399 { 361 { 400 static G4ThreadLocal G4int no_warnin << 362 if( std::fabs(startEnergy- endEnergy) > perThousand * endEnergy ) 401 moduloFac << 402 no_large_ediff++; << 403 if((no_large_ediff % warnModulo) == << 404 { 363 { 405 no_warnings++; << 364 static G4int no_warnings= 0, warnModulo=1, moduloFactor= 10; 406 std::ostringstream message; << 365 no_large_ediff ++; 407 message << "Energy change in Step << 366 if( (no_large_ediff% warnModulo) == 0 ) 408 << G4endl << " Relativ << 409 << std::setw(15) << (endEn << 410 << G4endl << " Startin << 411 << startEnergy / MeV << " << 412 << " Ending E= " << << 413 << " MeV " << G4endl << 414 << "Energy has been correc << 415 << " field propagation par << 416 if((verboseLevel > 2) || (no_warni << 417 (no_large_ediff == warnModulo * << 418 { 367 { 419 message << "These include Epsilo << 368 no_warnings++; 420 << G4endl << 369 G4cout << "WARNING - G4Transportation::AlongStepGetPIL()" << G4endl 421 << "which determine frac << 370 << " Energy changed in Step, more than 1/1000: " << G4endl 422 "integrated quantitie << 371 << " Start= " << startEnergy << G4endl 423 << G4endl << 372 << " End= " << endEnergy << G4endl 424 << "Note also the influe << 373 << " Relative change= " 425 "integration steps." << 374 << (startEnergy-endEnergy)/startEnergy << G4endl; 426 << G4endl; << 375 G4cout << " Energy has been corrected -- however, review" 427 } << 376 << " field propagation parameters for accuracy." << G4endl; 428 message << "Bad 'endpoint'. Energy << 377 G4cerr << "ERROR - G4Transportation::AlongStepGetPIL()" << G4endl 429 << G4endl << "Has occurred << 378 << " Bad 'endpoint'. Energy change detected" 430 << " times."; << 379 << " and corrected," << G4endl 431 G4Exception("G4Transportation::Alo << 380 << " occurred already " 432 JustWarning, message); << 381 << no_large_ediff << " times." << G4endl; 433 if(no_large_ediff == warnModulo * << 382 if( no_large_ediff == warnModulo * moduloFactor ) 434 { << 383 { 435 warnModulo *= moduloFactor; << 384 warnModulo *= moduloFactor; >> 385 } 436 } 386 } 437 } 387 } 438 } << 388 } // end of if (fVerboseLevel) 439 } // end of if (verboseLevel) << 389 440 } << 390 // Correct the energy for fields that conserve it 441 #endif << 391 // This - hides the integration error >> 392 // - but gives a better physical answer >> 393 fTransportEndKineticEnergy= track.GetKineticEnergy(); >> 394 } >> 395 >> 396 fTransportEndSpin = aFieldTrack.GetSpin(); >> 397 fParticleIsLooping = fFieldPropagator->IsParticleLooping() ; >> 398 endpointDistance = (fTransportEndPosition - startPosition).mag() ; >> 399 } >> 400 >> 401 // If we are asked to go a step length of 0, and we are on a boundary >> 402 // then a boundary will also limit the step -> we must flag this. >> 403 // >> 404 if( currentMinimumStep == 0.0 ) >> 405 { >> 406 if( currentSafety == 0.0 ) fGeometryLimitedStep = true ; 442 } 407 } 443 408 444 // Update the safety starting from the end-p 409 // Update the safety starting from the end-point, 445 // if it will become negative at the end-poi 410 // if it will become negative at the end-point. 446 // 411 // 447 if(currentSafety < fEndPointDistance) << 412 if( currentSafety < endpointDistance ) 448 { 413 { 449 if(particleCharge != 0.0) << 450 { << 451 G4double endSafety = 414 G4double endSafety = 452 fLinearNavigator->ComputeSafety(fTrans << 415 fLinearNavigator->ComputeSafety( fTransportEndPosition) ; 453 currentSafety = endSafety; << 416 currentSafety = endSafety ; 454 fPreviousSftOrigin = fTransportEndPositi << 417 fPreviousSftOrigin = fTransportEndPosition ; 455 fPreviousSafety = currentSafety; << 418 fPreviousSafety = currentSafety ; 456 fpSafetyHelper->SetCurrentSafety(current << 457 419 458 // Because the Stepping Manager assumes << 420 // Because the Stepping Manager assumes it is from the start point, 459 // add the StepLength 421 // add the StepLength 460 // 422 // 461 currentSafety += fEndPointDistance; << 423 currentSafety += endpointDistance ; 462 424 463 #ifdef G4DEBUG_TRANSPORT << 425 #ifdef G4DEBUG_TRANSPORT 464 G4cout.precision(12); << 426 G4cout.precision(16) ; 465 G4cout << "***G4Transportation::AlongSte << 427 G4cout << "***Transportation::AlongStepGPIL ** " << G4endl ; 466 G4cout << " Called Navigator->ComputeSa << 428 G4cout << " Called Navigator->ComputeSafety at " 467 << " and it returned safety= << 429 << fTransportEndPosition 468 G4cout << " Adding endpoint distance << 430 << " and it returned safety= " << endSafety << G4endl ; 469 << " to obtain pseudo-safety= << 431 G4cout << " Adding endpoint distance " << endpointDistance 470 } << 432 << " we obtain pseudo-safety= " << currentSafety << G4endl ; 471 else << 472 { << 473 G4cout << "***G4Transportation::AlongSte << 474 G4cout << " Avoiding call to ComputeSaf << 475 G4cout << " charge = " << particl << 476 G4cout << " mag moment = " << magneti << 477 #endif 433 #endif 478 } << 434 } 479 } << 480 << 481 fFirstStepInVolume = fNewTrack || fLastStepI << 482 fLastStepInVolume = false; << 483 fNewTrack = false; << 484 435 485 fParticleChange.ProposeFirstStepInVolume(fFi << 436 fParticleChange.ProposeTrueStepLength(geometryStepLength) ; 486 fParticleChange.ProposeTrueStepLength(geomet << 487 437 488 return geometryStepLength; << 438 return geometryStepLength ; 489 } 439 } 490 440 491 ////////////////////////////////////////////// 441 ////////////////////////////////////////////////////////////////////////// 492 // 442 // 493 // Initialize ParticleChange (by setting al 443 // Initialize ParticleChange (by setting all its members equal 494 // to correspond 444 // to corresponding members in G4Track) 495 445 496 G4VParticleChange* G4Transportation::AlongStep 446 G4VParticleChange* G4Transportation::AlongStepDoIt( const G4Track& track, 497 447 const G4Step& stepData ) 498 { 448 { 499 #if defined(G4VERBOSE) || defined(G4DEBUG_TRAN << 500 static G4ThreadLocal G4long noCallsASDI=0; << 501 noCallsASDI++; << 502 #else << 503 #define noCallsASDI 0 << 504 #endif << 505 << 506 if(fGeometryLimitedStep) << 507 { << 508 stepData.GetPostStepPoint()->SetStepStatus << 509 } << 510 << 511 fParticleChange.Initialize(track) ; 449 fParticleChange.Initialize(track) ; 512 450 513 // Code for specific process 451 // Code for specific process 514 // 452 // 515 fParticleChange.ProposePosition(fTransportEn 453 fParticleChange.ProposePosition(fTransportEndPosition) ; 516 fParticleChange.ProposeMomentumDirection(fTr 454 fParticleChange.ProposeMomentumDirection(fTransportEndMomentumDir) ; 517 fParticleChange.ProposeEnergy(fTransportEndK 455 fParticleChange.ProposeEnergy(fTransportEndKineticEnergy) ; 518 fParticleChange.SetMomentumChanged(fMomentum 456 fParticleChange.SetMomentumChanged(fMomentumChanged) ; 519 457 520 fParticleChange.ProposePolarization(fTranspo 458 fParticleChange.ProposePolarization(fTransportEndSpin); 521 << 459 522 G4double deltaTime = 0.0 ; 460 G4double deltaTime = 0.0 ; 523 461 524 // Calculate Lab Time of Flight (ONLY if fi 462 // Calculate Lab Time of Flight (ONLY if field Equations used it!) 525 // G4double endTime = fCandidateEndGlobalT << 463 // G4double endTime = fCandidateEndGlobalTime; 526 // G4double delta_time = endTime - startTime << 464 // G4double delta_time = endTime - startTime; 527 465 528 G4double startTime = track.GetGlobalTime() ; 466 G4double startTime = track.GetGlobalTime() ; 529 467 530 if (!fEndGlobalTimeComputed) 468 if (!fEndGlobalTimeComputed) 531 { 469 { 532 // The time was not integrated .. make th 470 // The time was not integrated .. make the best estimate possible 533 // 471 // 534 G4double initialVelocity = stepData.GetPr << 472 G4double finalVelocity = track.GetVelocity() ; 535 G4double stepLength = track.GetStepL << 473 G4double initialVelocity = stepData.GetPreStepPoint()->GetVelocity() ; 536 << 474 G4double stepLength = track.GetStepLength() ; 537 deltaTime= 0.0; // in case initialVeloci << 475 538 if ( initialVelocity > 0.0 ) { deltaTime << 476 static const G4ParticleDefinition* fOpticalPhoton = 539 << 477 G4ParticleTable::GetParticleTable()->FindParticle("opticalphoton"); >> 478 const G4DynamicParticle* fpDynamicParticle = track.GetDynamicParticle(); >> 479 if (fpDynamicParticle->GetDefinition()== fOpticalPhoton) >> 480 { >> 481 // A photon is in the medium of the final point >> 482 // during the step, so it has the final velocity. >> 483 deltaTime = stepLength/finalVelocity ; >> 484 } >> 485 else if (finalVelocity > 0.0) >> 486 { >> 487 G4double meanInverseVelocity ; >> 488 // deltaTime = stepLength/finalVelocity ; >> 489 meanInverseVelocity = 0.5 >> 490 * ( 1.0 / initialVelocity + 1.0 / finalVelocity ) ; >> 491 deltaTime = stepLength * meanInverseVelocity ; >> 492 } >> 493 else >> 494 { >> 495 deltaTime = stepLength/initialVelocity ; >> 496 } 540 fCandidateEndGlobalTime = startTime + d 497 fCandidateEndGlobalTime = startTime + deltaTime ; 541 fParticleChange.ProposeLocalTime( track. << 542 } 498 } 543 else 499 else 544 { 500 { 545 deltaTime = fCandidateEndGlobalTime - sta 501 deltaTime = fCandidateEndGlobalTime - startTime ; 546 fParticleChange.ProposeGlobalTime( fCandi << 547 } 502 } 548 503 >> 504 fParticleChange.ProposeGlobalTime( fCandidateEndGlobalTime ) ; 549 505 550 // Now Correct by Lorentz factor to get delt << 506 // Now Correct by Lorentz factor to get "proper" deltaTime 551 507 552 G4double restMass = track.GetDynamicP 508 G4double restMass = track.GetDynamicParticle()->GetMass() ; 553 G4double deltaProperTime = deltaTime*( restM 509 G4double deltaProperTime = deltaTime*( restMass/track.GetTotalEnergy() ) ; 554 510 555 fParticleChange.ProposeProperTime(track.GetP 511 fParticleChange.ProposeProperTime(track.GetProperTime() + deltaProperTime) ; 556 //fParticleChange.ProposeTrueStepLength( tra << 512 //fParticleChange. ProposeTrueStepLength( track.GetStepLength() ) ; 557 513 558 // If the particle is caught looping or is s 514 // If the particle is caught looping or is stuck (in very difficult 559 // boundaries) in a magnetic field (doing ma << 515 // boundaries) in a magnetic field (doing many steps) >> 516 // THEN this kills it ... 560 // 517 // 561 if ( fParticleIsLooping ) 518 if ( fParticleIsLooping ) 562 { 519 { 563 G4double endEnergy= fTransportEndKinetic 520 G4double endEnergy= fTransportEndKineticEnergy; 564 fNoLooperTrials ++; << 565 auto particleType= track.GetDynamicParti << 566 << 567 G4bool stable = particleType->GetPDGStab << 568 G4bool candidateForEnd = (endEnergy < fT << 569 || (fNoLooperTrial << 570 G4bool unstableAndKillable = !stable && << 571 G4bool unstableForEnd = (endEnergy < fTh << 572 && (fNoLooperTri << 573 if( (candidateForEnd && stable) || (unst << 574 { << 575 // Kill the looping particle << 576 // << 577 fParticleChange.ProposeTrackStatus( fS << 578 G4int particlePDG= particleType->GetPD << 579 const G4int electronPDG= 11; // G4Elec << 580 << 581 // Simple statistics << 582 fSumEnergyKilled += endEnergy; << 583 fSumEnerSqKilled += endEnergy * endEne << 584 fNumLoopersKilled++; << 585 << 586 if( endEnergy > fMaxEnergyKilled ) { << 587 fMaxEnergyKilled = endEnergy; << 588 fMaxEnergyKilledPDG = particlePDG; << 589 } << 590 if( particleType->GetPDGEncoding() != << 591 { << 592 fSumEnergyKilled_NonElectron += end << 593 fSumEnerSqKilled_NonElectron += end << 594 fNumLoopersKilled_NonElectron++; << 595 << 596 if( endEnergy > fMaxEnergyKilled_No << 597 { << 598 fMaxEnergyKilled_NonElectron = e << 599 fMaxEnergyKilled_NonElecPDG = p << 600 } << 601 } << 602 521 603 if( endEnergy > fThreshold_Warning_Ene << 522 if( (endEnergy < fThreshold_Important_Energy) 604 { << 523 || (fNoLooperTrials >= fThresholdTrials ) ){ 605 fpLogger->ReportLoopingTrack( track, << 524 // Kill the looping particle 606 noCall << 525 // 607 } << 526 fParticleChange.ProposeTrackStatus( fStopAndKill ) ; 608 fNoLooperTrials=0; << 527 609 } << 528 // 'Bare' statistics 610 else << 529 fSumEnergyKilled += endEnergy; 611 { << 530 if( endEnergy > fMaxEnergyKilled) { fMaxEnergyKilled= endEnergy; } 612 fMaxEnergySaved = std::max( endEnergy, << 531 613 if( fNoLooperTrials == 1 ) { << 614 fSumEnergySaved += endEnergy; << 615 if ( !stable ) << 616 fSumEnergyUnstableSaved += endEne << 617 } << 618 #ifdef G4VERBOSE 532 #ifdef G4VERBOSE 619 if( verboseLevel > 2 && ! fSilenceLoop << 533 if( (fVerboseLevel > 1) || 620 { << 534 ( endEnergy > fThreshold_Warning_Energy ) ) { 621 G4cout << " " << __func__ << 535 G4cout << " G4Transportation is killing track that is looping or stuck " 622 << " Particle is looping but << 536 << G4endl 623 << " Number of trials = " < << 537 << " This track has " << track.GetKineticEnergy() / MeV 624 << " No of calls to = " << << 538 << " MeV energy." << G4endl; 625 } << 539 } 626 #endif 540 #endif >> 541 fNoLooperTrials=0; 627 } 542 } 628 } << 543 else{ 629 else << 544 fNoLooperTrials ++; 630 { << 545 } >> 546 }else{ 631 fNoLooperTrials=0; 547 fNoLooperTrials=0; 632 } 548 } 633 549 634 // Another (sometimes better way) is to use 550 // Another (sometimes better way) is to use a user-limit maximum Step size 635 // to alleviate this problem .. 551 // to alleviate this problem .. 636 552 637 // Introduce smooth curved trajectories to p 553 // Introduce smooth curved trajectories to particle-change 638 // 554 // 639 fParticleChange.SetPointerToVectorOfAuxiliar 555 fParticleChange.SetPointerToVectorOfAuxiliaryPoints 640 (fFieldPropagator->GimmeTrajectoryVectorAn 556 (fFieldPropagator->GimmeTrajectoryVectorAndForgetIt() ); 641 557 642 return &fParticleChange ; 558 return &fParticleChange ; 643 } 559 } 644 560 645 ////////////////////////////////////////////// 561 ////////////////////////////////////////////////////////////////////////// 646 // 562 // 647 // This ensures that the PostStep action is a 563 // This ensures that the PostStep action is always called, 648 // so that it can do the relocation if it is 564 // so that it can do the relocation if it is needed. 649 // 565 // 650 566 651 G4double G4Transportation:: 567 G4double G4Transportation:: 652 PostStepGetPhysicalInteractionLength( const G4 568 PostStepGetPhysicalInteractionLength( const G4Track&, 653 G4 569 G4double, // previousStepSize 654 G4 570 G4ForceCondition* pForceCond ) 655 { << 571 { 656 fFieldExertedForce = false; // Not known << 657 *pForceCond = Forced ; 572 *pForceCond = Forced ; 658 return DBL_MAX ; // was kInfinity ; but con 573 return DBL_MAX ; // was kInfinity ; but convention now is DBL_MAX 659 } 574 } 660 575 661 ////////////////////////////////////////////// 576 ///////////////////////////////////////////////////////////////////////////// 662 << 663 void G4Transportation::SetTouchableInformation << 664 { << 665 const G4VPhysicalVolume* pNewVol = touchable << 666 const G4Material* pNewMaterial = 0 ; << 667 G4VSensitiveDetector* pNewSensitiveDetector << 668 << 669 if( pNewVol != 0 ) << 670 { << 671 pNewMaterial= pNewVol->GetLogicalVolume()- << 672 pNewSensitiveDetector= pNewVol->GetLogical << 673 } << 674 << 675 fParticleChange.SetMaterialInTouchable( (G4M << 676 fParticleChange.SetSensitiveDetectorInToucha << 677 // temporarily until Get/Set Material of Par << 678 // and StepPoint can be made const. << 679 << 680 const G4MaterialCutsCouple* pNewMaterialCuts << 681 if( pNewVol != 0 ) << 682 { << 683 pNewMaterialCutsCouple=pNewVol->GetLogical << 684 } << 685 << 686 if ( pNewVol!=0 && pNewMaterialCutsCouple!=0 << 687 && pNewMaterialCutsCouple->GetMaterial()!= << 688 { << 689 // for parametrized volume << 690 // << 691 pNewMaterialCutsCouple = << 692 G4ProductionCutsTable::GetProductionCuts << 693 ->GetMaterialCuts << 694 pNewMaterialCut << 695 } << 696 fParticleChange.SetMaterialCutsCoupleInTouch << 697 << 698 // Set the touchable in ParticleChange << 699 // this must always be done because the part << 700 // uses this value to overwrite the current << 701 // << 702 fParticleChange.SetTouchableHandle(touchable << 703 } << 704 << 705 ////////////////////////////////////////////// << 706 // 577 // 707 578 708 G4VParticleChange* G4Transportation::PostStepD 579 G4VParticleChange* G4Transportation::PostStepDoIt( const G4Track& track, 709 580 const G4Step& ) 710 { 581 { 711 G4TouchableHandle retCurrentTouchable ; / << 582 G4TouchableHandle retCurrentTouchable ; // The one to return 712 G4bool isLastStep= false; << 713 583 714 // Initialize ParticleChange (by setting al 584 // Initialize ParticleChange (by setting all its members equal 715 // to correspond 585 // to corresponding members in G4Track) 716 // fParticleChange.Initialize(track) ; // T 586 // fParticleChange.Initialize(track) ; // To initialise TouchableChange 717 587 718 fParticleChange.ProposeTrackStatus(track.Get 588 fParticleChange.ProposeTrackStatus(track.GetTrackStatus()) ; 719 589 720 // If the Step was determined by the volume 590 // If the Step was determined by the volume boundary, 721 // logically relocate the particle 591 // logically relocate the particle 722 << 592 723 if(fGeometryLimitedStep) 593 if(fGeometryLimitedStep) 724 { 594 { 725 // fCurrentTouchable will now become the p 595 // fCurrentTouchable will now become the previous touchable, 726 // and what was the previous will be freed 596 // and what was the previous will be freed. 727 // (Needed because the preStepPoint can po 597 // (Needed because the preStepPoint can point to the previous touchable) 728 598 729 fLinearNavigator->SetGeometricallyLimitedS 599 fLinearNavigator->SetGeometricallyLimitedStep() ; 730 fLinearNavigator-> 600 fLinearNavigator-> 731 LocateGlobalPointAndUpdateTouchableHandle( 601 LocateGlobalPointAndUpdateTouchableHandle( track.GetPosition(), 732 602 track.GetMomentumDirection(), 733 603 fCurrentTouchableHandle, 734 604 true ) ; 735 // Check whether the particle is out of th 605 // Check whether the particle is out of the world volume 736 // If so it has exited and must be killed. 606 // If so it has exited and must be killed. 737 // 607 // 738 if( fCurrentTouchableHandle->GetVolume() = 608 if( fCurrentTouchableHandle->GetVolume() == 0 ) 739 { 609 { 740 fParticleChange.ProposeTrackStatus( fSt 610 fParticleChange.ProposeTrackStatus( fStopAndKill ) ; 741 } 611 } 742 retCurrentTouchable = fCurrentTouchableHan 612 retCurrentTouchable = fCurrentTouchableHandle ; 743 fParticleChange.SetTouchableHandle( fCurre 613 fParticleChange.SetTouchableHandle( fCurrentTouchableHandle ) ; 744 << 745 // Update the Step flag which identifies t << 746 if( !fFieldExertedForce ) << 747 isLastStep = fLinearNavigator->ExitedM << 748 || fLinearNavigator->Entered << 749 else << 750 isLastStep = fFieldPropagator->IsLastSt << 751 } 614 } 752 else // fGeometryLimitedStep 615 else // fGeometryLimitedStep is false 753 { 616 { >> 617 #ifdef G4DEBUG_POSTSTEP_TRANSPORT >> 618 >> 619 // Although the location is changed, we know that the physical >> 620 // volume remains constant. >> 621 // In order to help in checking the user geometry >> 622 // we perform a full-relocation and check its result >> 623 // *except* if we have made a very small step from a boundary >> 624 // (i.e. remaining inside the tolerance) >> 625 >> 626 G4bool startAtSurface_And_MoveEpsilon ; >> 627 startAtSurface_And_MoveEpsilon = >> 628 (stepData.GetPreStepPoint()->GetSafety() == 0.0) && >> 629 (stepData.GetStepLength() < kCarTolerance ) ; >> 630 >> 631 if( startAtSurface_And_MoveEpsilon ) >> 632 { >> 633 fLinearNavigator-> >> 634 LocateGlobalPointAndUpdateTouchableHandle( track.GetPosition(), >> 635 track.GetMomentumDirection(), >> 636 fCurrentTouchableHandle, >> 637 true ); >> 638 if( fCurrentTouchableHandle->GetVolume() != track.GetVolume() ) >> 639 { >> 640 G4cerr << " ERROR: A relocation within safety has" >> 641 << " caused a volume change! " << G4endl ; >> 642 G4cerr << " The old volume is called " >> 643 << track.GetVolume()->GetName() << G4endl ; >> 644 G4cerr << " The new volume is called " ; >> 645 >> 646 if ( fCurrentTouchableHandle->GetVolume() != 0 ) >> 647 { >> 648 G4cerr << fCurrentTouchableHandle->GetVolume()->GetName() >> 649 << G4endl ; >> 650 } >> 651 else >> 652 { >> 653 G4cerr << "Out of World" << G4endl ; >> 654 } >> 655 G4cerr.precision(7) ; >> 656 G4cerr << " The position is " << track.GetPosition() << G4endl ; >> 657 >> 658 // Let us relocate again, for debuging >> 659 // >> 660 fLinearNavigator-> >> 661 LocateGlobalPointAndUpdateTouchableHandle(track.GetPosition(), >> 662 track.GetMomentumDirection(), >> 663 fCurrentTouchableHandle, >> 664 true ) ; >> 665 G4cerr << " The newer volume is called " ; >> 666 >> 667 if ( fCurrentTouchableHandle->GetVolume() != 0 ) >> 668 { >> 669 G4cerr << fCurrentTouchableHandle->GetVolume()->GetName() >> 670 << G4endl ; >> 671 } >> 672 else >> 673 { >> 674 G4cerr << "Out of World" << G4endl ; >> 675 } >> 676 } >> 677 >> 678 assert( fCurrentTouchableHandle->GetVolume()->GetName() == >> 679 track.GetVolume()->GetName() ) ; >> 680 >> 681 retCurrentTouchable = fCurrentTouchableHandle ; >> 682 fParticleChange.SetTouchableHandle( fCurrentTouchableHandle ) ; >> 683 >> 684 } >> 685 else >> 686 { >> 687 retCurrentTouchable = track.GetTouchableHandle() ; >> 688 fParticleChange.SetTouchableHandle( track.GetTouchableHandle() ) ; >> 689 } >> 690 >> 691 // This must be done in the above if ( AtSur ) fails >> 692 // We also do it for if (true) in order to get debug/opt to >> 693 // behave as exactly the same way as possible. >> 694 // >> 695 fLinearNavigator->LocateGlobalPointWithinVolume( track.GetPosition() ) ; >> 696 >> 697 #else // ie #ifndef G4DEBUG_POSTSTEP_TRANSPORT does a quick relocation >> 698 754 // This serves only to move the Navigator' 699 // This serves only to move the Navigator's location 755 // 700 // 756 fLinearNavigator->LocateGlobalPointWithinV 701 fLinearNavigator->LocateGlobalPointWithinVolume( track.GetPosition() ) ; 757 702 758 // The value of the track's current Toucha 703 // The value of the track's current Touchable is retained. 759 // (and it must be correct because we must 704 // (and it must be correct because we must use it below to 760 // overwrite the (unset) one in particle c 705 // overwrite the (unset) one in particle change) 761 // It must be fCurrentTouchable too ?? << 706 // Although in general this is fCurrentTouchable, at the start of >> 707 // a step it could be different ... ?? 762 // 708 // 763 fParticleChange.SetTouchableHandle( track. 709 fParticleChange.SetTouchableHandle( track.GetTouchableHandle() ) ; 764 retCurrentTouchable = track.GetTouchableHa 710 retCurrentTouchable = track.GetTouchableHandle() ; 765 711 766 isLastStep= false; << 712 #endif 767 } // endif ( fGeometryLimitedStep ) 713 } // endif ( fGeometryLimitedStep ) 768 fLastStepInVolume= isLastStep; << 769 << 770 fParticleChange.ProposeFirstStepInVolume(fFi << 771 fParticleChange.ProposeLastStepInVolume(isLa << 772 << 773 SetTouchableInformation(retCurrentTouchable) << 774 714 775 return &fParticleChange ; << 715 const G4VPhysicalVolume* pNewVol = retCurrentTouchable->GetVolume() ; 776 } << 716 const G4Material* pNewMaterial = 0 ; 777 << 717 const G4VSensitiveDetector* pNewSensitiveDetector = 0 ; 778 ////////////////////////////////////////////// << 718 779 // New method takes over the responsibility to << 719 if( pNewVol != 0 ) 780 // G4Transportation object at the start of a n << 720 { 781 // of a suspended track. << 721 pNewMaterial= pNewVol->GetLogicalVolume()->GetMaterial(); 782 // << 722 pNewSensitiveDetector= pNewVol->GetLogicalVolume()->GetSensitiveDetector(); >> 723 } 783 724 784 void << 725 // ( <const_cast> pNewMaterial ) ; 785 G4Transportation::StartTracking(G4Track* aTrac << 726 // ( <const_cast> pNewSensitiveDetector) ; 786 { << 787 G4VProcess::StartTracking(aTrack); << 788 fNewTrack= true; << 789 fFirstStepInVolume= true; << 790 fLastStepInVolume= false; << 791 << 792 // The actions here are those that were take << 793 // when track.GetCurrentStepNumber()==1 << 794 727 795 // Whether field exists should be determined << 728 fParticleChange.SetMaterialInTouchable( (G4Material *) pNewMaterial ) ; 796 G4FieldManagerStore* fieldMgrStore= G4FieldM << 729 fParticleChange.SetSensitiveDetectorInTouchable( (G4VSensitiveDetector *) pNewSensitiveDetector ) ; 797 fAnyFieldExists = fieldMgrStore->size() > 0; << 798 << 799 // reset safety value and center << 800 // << 801 fPreviousSafety = 0.0 ; << 802 fPreviousSftOrigin = G4ThreeVector(0.,0.,0.) << 803 << 804 // reset looping counter -- for motion in fi << 805 fNoLooperTrials= 0; << 806 // Must clear this state .. else it depends << 807 // --> a better solution would set this fro << 808 // Was if( aTrack->GetCurrentStepNumber()==1 << 809 730 810 // ChordFinder reset internal state << 731 const G4MaterialCutsCouple* pNewMaterialCutsCouple = 0; 811 // << 732 if( pNewVol != 0 ) 812 if( fFieldPropagator && fAnyFieldExists ) << 813 { 733 { 814 fFieldPropagator->ClearPropagatorState(); << 734 pNewMaterialCutsCouple=pNewVol->GetLogicalVolume()->GetMaterialCutsCouple(); 815 // Resets all state of field propagator << 816 // values (in case of overlaps and to w << 817 } 735 } 818 736 819 // Make sure to clear the chord finders of a << 737 if( pNewVol!=0 && pNewMaterialCutsCouple!=0 && pNewMaterialCutsCouple->GetMaterial()!=pNewMaterial ) 820 // << 738 { 821 fieldMgrStore->ClearAllChordFindersState(); << 739 // for parametrized volume 822 << 740 // 823 // Update the current touchable handle (fro << 741 pNewMaterialCutsCouple = 824 // << 742 G4ProductionCutsTable::GetProductionCutsTable() 825 fCurrentTouchableHandle = aTrack->GetTouchab << 743 ->GetMaterialCutsCouple(pNewMaterial, >> 744 pNewMaterialCutsCouple->GetProductionCuts()); >> 745 } >> 746 fParticleChange.SetMaterialCutsCoupleInTouchable( pNewMaterialCutsCouple ); 826 747 827 // Inform field propagator of new track << 748 // temporarily until Get/Set Material of ParticleChange, >> 749 // and StepPoint can be made const. >> 750 // Set the touchable in ParticleChange >> 751 // this must always be done because the particle change always >> 752 // uses this value to overwrite the current touchable pointer. 828 // 753 // 829 fFieldPropagator->PrepareNewTrack(); << 754 fParticleChange.SetTouchableHandle(retCurrentTouchable) ; 830 } << 831 << 832 ////////////////////////////////////////////// << 833 // << 834 << 835 G4bool G4Transportation::EnableMagneticMoment( << 836 { << 837 G4bool lastValue= fUseMagneticMoment; << 838 fUseMagneticMoment= useMoment; << 839 return lastValue; << 840 } << 841 << 842 ////////////////////////////////////////////// << 843 // << 844 << 845 G4bool G4Transportation::EnableGravity(G4bool << 846 { << 847 G4bool lastValue= fUseGravity; << 848 fUseGravity= useGravity; << 849 return lastValue; << 850 } << 851 << 852 ////////////////////////////////////////////// << 853 // << 854 // Supress (or not) warnings about 'looping' << 855 << 856 void G4Transportation::SetSilenceLooperWarning << 857 { << 858 fSilenceLooperWarnings= val; // Flag to *Su << 859 } << 860 << 861 ////////////////////////////////////////////// << 862 // << 863 G4bool G4Transportation::GetSilenceLooperWarni << 864 { << 865 return fSilenceLooperWarnings; << 866 } << 867 << 868 << 869 ////////////////////////////////////////////// << 870 // << 871 void G4Transportation::SetHighLooperThresholds << 872 { << 873 // Restores the old high values -- potential << 874 // HEP experiments. << 875 // Caution: All tracks with E < 100 MeV tha << 876 SetThresholdWarningEnergy( 100.0 * CLHEP: << 877 SetThresholdImportantEnergy( 250.0 * CLHEP: << 878 << 879 G4int maxTrials = 10; << 880 SetThresholdTrials( maxTrials ); << 881 << 882 PushThresholdsToLogger(); // Again, to be s << 883 if( verboseLevel ) ReportLooperThresholds() << 884 } << 885 << 886 ////////////////////////////////////////////// << 887 void G4Transportation::SetLowLooperThresholds( << 888 { << 889 // These values were the default in Geant4 1 << 890 SetThresholdWarningEnergy( 1.0 * CLHEP:: << 891 SetThresholdImportantEnergy( 1.0 * CLHEP:: << 892 << 893 G4int maxTrials = 30; // A new value - was << 894 SetThresholdTrials( maxTrials ); << 895 755 896 PushThresholdsToLogger(); // Again, to be s << 756 return &fParticleChange ; 897 if( verboseLevel ) ReportLooperThresholds() << 898 } << 899 << 900 ////////////////////////////////////////////// << 901 // << 902 void << 903 G4Transportation::ReportMissingLogger( const c << 904 { << 905 const char* message= "Logger object missing << 906 G4String classAndMethod= G4String("G4Transp << 907 G4Exception(classAndMethod, "Missing Logger << 908 } << 909 << 910 << 911 ////////////////////////////////////////////// << 912 // << 913 void << 914 G4Transportation::ReportLooperThresholds() << 915 { << 916 PushThresholdsToLogger(); // To be absolut << 917 fpLogger->ReportLooperThresholds("G4Transpo << 918 } << 919 << 920 ////////////////////////////////////////////// << 921 // << 922 void G4Transportation::ProcessDescription(std: << 923 << 924 // StreamInfo(std::ostream& out, const G4Parti << 925 << 926 { << 927 G4String indent = " "; // : ""); << 928 G4long oldPrec= outStr.precision(6); << 929 // outStr << std::setprecision(6); << 930 outStr << G4endl << indent << GetProcessName << 931 << 932 outStr << " Parameters for looping particl << 933 << " warning-E = " << fThreshold_ << 934 << " important E = " << fThreshol << 935 << " thresholdTrials " << fThresh << 936 outStr.precision(oldPrec); << 937 } 757 } 938 758